Card 0 of 20
For the line
Which one of these coordinates can be found on the line?
To test the coordinates, plug the x-coordinate into the line equation and solve for y.
y = 1/3x -7
Test (3,-6)
y = 1/3(3) – 7 = 1 – 7 = -6 YES!
Test (3,7)
y = 1/3(3) – 7 = 1 – 7 = -6 NO
Test (6,-12)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (6,5)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (9,5)
y = 1/3(9) – 7 = 3 – 7 = -4 NO
Compare your answer with the correct one above
Consider the lines described by the following two equations:
4y = 3x2
3y = 4x2
Find the vertical distance between the two lines at the points where x = 6.
Since the vertical coordinates of each point are given by y, solve each equation for y and plug in 6 for x, as follows:
Taking the difference of the resulting y -values give the vertical distance between the points (6,27) and (6,48), which is 21.
Compare your answer with the correct one above
Solve the following system of equations:
–2x + 3y = 10
2x + 5y = 6
Since we have –2x and +2x in the equations, it makes sense to add the equations together to give 8y = 16 yielding y = 2. Then we substitute y = 2 into one of the original equations to get x = –2. So the solution to the system of equations is (–2, 2)
Compare your answer with the correct one above
Which of the following sets of coordinates are on the line ?
when plugged in for
and
make the linear equation true, therefore those coordinates fall on that line.
Because this equation is true, the point must lie on the line. The other given answer choices do not result in true equalities.
Compare your answer with the correct one above
Which of the following points can be found on the line ?
We are looking for an ordered pair that makes the given equation true. To solve, plug in the various answer choices to find the true equality.
Because this equality is true, we can conclude that the point lies on this line. None of the other given answer options will result in a true equality.
Compare your answer with the correct one above
Which of the following points is on both the line
and the line
In the multiple choice format, you can just plug in these points to see which satisfies both equations. and
work for the first but not the second, and
and
work for the second but not the first. Only
works for both.
Alternatively (or if you were in a non-multiple choice scenario), you could set the equations equal to each other and solve for one of the variables. So, for instance,
and
so
Now you can solve and get . Plug this back into either of the original equations and get
.
Compare your answer with the correct one above
A line has the equation . Which of the following points lies on the line?
Plug the x-coordinate of an answer choice into the equation to see if the y-coordinate matches with what comes out of the equation.
For ,
Compare your answer with the correct one above
Which of the following points lies on the line with equation ?
To find which point lies on the line, plug in the x-coordinate value of an answer choice into the equation. If the y-coordinate value that comes out of the equation matches that of the answer choice, then the point is on the line.
For ,
So then, lies on the line.
Compare your answer with the correct one above
Which of the following points is on the line with the equation ?
To find if a point is on the line, plug in the x-coordinate of the answer choice into the given equation. If the resulting value for the y-coordinate matches that of the answer choice, then that point is on the line.
For ,
Compare your answer with the correct one above
Which of the following points lies on the line with the equation ?
To find if a point is on the line, plug in the x-coordinate of the answer choice into the given equation. If the resulting value for the y-coordinate matches that of the answer choice, then that point is on the line.
For ,
Compare your answer with the correct one above
Which of the following points lies on the line with the equation ?
To find if a point is on the line, plug in the x-coordinate of the answer choice into the given equation. If the resulting value for the y-coordinate matches that of the answer choice, then that point is on the line.
For ,
Compare your answer with the correct one above
Which of the following points lies on the line with the equation ?
To find if a point is on the line, plug in the x-coordinate of the answer choice into the given equation. If the resulting value for the y-coordinate matches that of the answer choice, then that point is on the line.
For ,
Compare your answer with the correct one above
Which of the following points lies on the line with the equation ?
To find if a point is on the line, plug in the x-coordinate of the answer choice into the given equation. If the resulting value for the y-coordinate matches that of the answer choice, then that point is on the line.
For ,
Compare your answer with the correct one above
What is the slope of line 3 = 8y - 4x?
Solve equation for y. y=mx+b, where m is the slope
Compare your answer with the correct one above
What is the slope of the given linear equation?
2x + 4y = -7
We can convert the given equation into slope-intercept form, y=mx+b, where m is the slope. We get y = (-1/2)x + (-7/2)
Compare your answer with the correct one above
Find the slope of the line 6X – 2Y = 14
Put the equation in slope-intercept form:
y = mx + b
-2y = -6x +14
y = 3x – 7
The slope of the line is represented by M; therefore the slope of the line is 3.
Compare your answer with the correct one above
What is the slope of the line:
First put the question in slope intercept form (y = mx + b):
–(1/6)y = –(14/3)x – 7 =>
y = 6(14/3)x – 7
y = 28x – 7.
The slope is 28.
Compare your answer with the correct one above
If 2x – 4y = 10, what is the slope of the line?
First put the equation into slope-intercept form, solving for y: 2x – 4y = 10 → –4y = –2x + 10 → y = 1/2*x – 5/2. So the slope is 1/2.
Compare your answer with the correct one above
What is the slope of the line with equation 4_x_ – 16_y_ = 24?
The equation of a line is:
y = mx + b, where m is the slope
4_x_ – 16_y_ = 24
–16_y_ = –4_x_ + 24
y = (–4_x_)/(–16) + 24/(–16)
y = (1/4)x – 1.5
Slope = 1/4
Compare your answer with the correct one above
What is the slope of a line which passes through coordinates and
?
Slope is found by dividing the difference in the -coordinates by the difference in the
-coordinates.
Compare your answer with the correct one above