Card 0 of 20
Let f(x, y) = x2y2 – xy + y. If a = f(1, 3), and b = f(–2, –1), then what is f(a, b)?
f(x, y) is defined as x2y2 – xy + y. In order to find f(a, b), we will need to first find a and then b.
We are told that a = f(1, 3). We can use the definition of f(x, y) to determine the value of a.
a = f(1, 3) = 1232 – 1(3) + 3 = 1(9) – 3 + 3 = 9 + 0 = 9
a = 9
Similarly, we can find b by determining the value of f(–2, –1).
b = f(–2, –1) = (–2)2(–1)2 – (–2)(–1) + –1 = 4(1) – (2) – 1 = 4 – 2 – 1 = 1
b = 1
Now, we can find f(a, b), which is equal to f(9, 1).
f(a, b) = f(9, 1) = 92(12) – 9(1) + 1 = 81 – 9 + 1 = 73
f(a, b) = 73
The answer is 73.
Compare your answer with the correct one above
Let F(x) = _x_3 + 2_x_2 – 3 and G(x) = x + 5. Find F(G(x))
F(G(x)) is a composite function where the expression G(x) is substituted in for x in F(x)
F(G(x)) = (x + 5)3 + 2(x + 5)2 – 3 = x_3 + 17_x_2 + 95_x + 172
G(F(x)) = _x_3 + _x_2 + 2
F(x) – G(x) = _x_3 + 2_x_2 – x – 8
F(x) + G(x) = _x_3 + 2_x_2 + x + 2
Compare your answer with the correct one above
What is the value of xy_2(xy – 3_xy) given that x = –3 and y = 7?
Evaluating yields –6174.
–147(–21 + 63) =
–147 * 42 = –6174
Compare your answer with the correct one above
If z + 2x = 10 and 7z + 2x = 16, what is z?
Subtract the first expression from the second. That gives you 6z = 6. That simplifies to z = 1.
Compare your answer with the correct one above
If the function g is defined by g(x) = 4_x_ + 5, then 2_g_(x) – 3 =
The function g(x) is equal to 4_x_ + 5, and the notation 2_g_(x) asks us to multiply the entire function by 2. 2(4_x_ + 5) = 8_x_ + 10. We then subtract 3, the second part of the new equation, to get 8_x_ + 7.
Compare your answer with the correct one above
If f(x) = x_2 + 5_x and g(x) = 2, what is f(g(4))?
First you must find what g(4) is. The definition of g(x) tells you that the function is always equal to 2, regardless of what “x” is. Plugging 2 into f(x), we get 22 + 5(2) = 14.
Compare your answer with the correct one above
f(a) = 1/3(a_3 + 5_a – 15)
Find a = 3.
Substitute 3 for all a.
(1/3) * (33 + 5(3) – 15)
(1/3) * (27 + 15 – 15)
(1/3) * (27) = 9
Compare your answer with the correct one above
Evaluate f(g(6)) given that f(x) = _x_2 – 6 and g(x) = –(1/2)x – 5
Begin by solving g(6) first.
g(6) = –(1/2)(6) – 5
g(6) = –3 – 5
g(6) = –8
We substitute f(–8)
f(–8) = (–8)2 – 6
f(–8) = 64 – 6
f(–8) = 58
Compare your answer with the correct one above
If f(x) = |(_x_2 – 175)|, what is the value of f(–10) ?
If x = –10, then (_x_2 – 175) = 100 – 175 = –75. But the sign |x| means the absolute value of x. Absolute values are always positive.
|–75| = 75
Compare your answer with the correct one above
If f(x)= 2x² + 5x – 3, then what is f(–2)?
By plugging in –2 for x and evaluating, the answer becomes 8 – 10 – 3 = -5.
Compare your answer with the correct one above
If f(x) = x² – 2 and g(x) = 3x + 5, what is f(g(x))?
To find f(g(x) plug the equation for g(x) into equation f(x) in place of “x” so that you have: f(g(x)) = (3x + 5)² – 2.
Simplify: (3x + 5)(3x + 5) – 2
Use FOIL: 9x² + 30x + 25 – 2 = 9x² + 30x + 23
Compare your answer with the correct one above
If f(x)=3x and g(x)=2x+2, what is the value of f(g(x)) when x=3?
With composition of functions (as with the order of operations) we perform what is inside of the parentheses first. So, g(3)=2(3)+2=8 and then f(8)=24.
Compare your answer with the correct one above
The cost of a cell phone plan is $40 for the first 100 minutes of calls, and then 5 cents for each minute after. If the variable x is equal to the number of minutes used for calls in a month on that cell phone plan, what is the equation f(x) for the cost, in dollars, of the cell phone plan for calls during that month?
40 dollars is the constant cost of the cell phone plan, regardless of minute usage for calls. We then add 5 cents, or 0.05 dollars, for every minute of calls over 100. Thus, we do not multiply 0.05 by x, but rather by (x - 100), since the 5 cent charge only applies to minutes used that are over the 100-minute barrier. For example, if you used 101 minutes for calls during the month, you would only pay the 5 cents for that 101st minute, making your cost for calls $40.05. Thus, the answer is 40 + 0.05(x - 100).
Compare your answer with the correct one above
f(x) = 4x + 2
g(x) = 3x - 1
The two equations above define the functions f(x) = g(x). If f(d) = 2g(d) for some value of d, then what is the value of d?
f(x) = 4x + 2
g(x) = 3x - 1
We have f(d) = 2g(d). We multiply each value in g(d) by 2.
4d + 2 = 2(3d - 1) (Distribute the 2 in the parentheses by multiplying each value in them by 2.)
4d + 2 = 6d - 2 (Add 2 to both sides.)
4d + 4 = 6d (Subtract 4d from both sides.)
4 = 2d (Divide both sides by 2.)
2 = d
We can plug that back in to double check.
4(2) + 2 = 6(2) - 2
8 + 2 = 12 - 2
10 = 10
Compare your answer with the correct one above
The function f, where f(x) = x2 + 6x + 8, is related to function g, where g(x) = 5 f(x-2). What is g(3)?
Doing things in an orderly way is a friend to the test-taker.
g(3) = 5 f(3-2)
= 5 f(1)
= 5 \[ 12 + 6**∙**1 + 8\]
= 5 \[ 1 + 6 + 8\]
= 5 \[ 15\]
= 75
Compare your answer with the correct one above
A function F is defined as follows:
for x2 > 1, F(x) = 4x2 + 2x – 2
for x2 < 1, F(x) = 4x2 – 2x + 2
What is the value of F(1/2)?
For F(1/2), x2=1/4, which is less than 1, so we use the bottom equation to solve. This gives F(1/2)= 4(1/2)2 – 2(1/2) + 2 = 1 – 1 + 2 = 2
Compare your answer with the correct one above
If f(x) = _x_2 – 5 for all values x and f(a) = 4, what is one possible value of a?
Using the defined function, f(a) will produce the same result when substituted for x:
f(a) = _a_2 – 5
Setting this equal to 4, you can solve for a:
_a_2 – 5 = 4
_a_2 = 9
a = –3 or 3
Compare your answer with the correct one above
The function is defined as
. What is
?
Substitute -1 for in the given function.
If you didn’t remember the negative sign, you will have calculated 36. If you remembered the negative sign at the very last step, you will have calculated -36; however, if you did not remember that is 1, then you will have calculated 18.
Compare your answer with the correct one above
f(x) = 2x2 + x – 3 and g(y) = 2y – 7. What is f(g(4))?
To evaluate f(g(4)), one must first determine the value of g(4), then plug that into f(x).
g(4) = 2 x 4 – 7 = 1.
f(1) = 2 x 12 + 2 x 1 – 3 = 0.
Compare your answer with the correct one above
What is the value of the function f(x) = 6x2 + 16x – 6 when x = –3?
There are two ways to do this problem. The first way just involves plugging in –3 for x and solving 6〖(–3)〗2 + 16(–3) – 6, which equals 54 – 48 – 6 = 0. The second way involves factoring the polynomial to (6x – 2)(x + 3) and then plugging in –3 for x. The second way quickly shows that the answer is 0 due to multiplying by (–3 + 3).
Compare your answer with the correct one above