Card 0 of 20
In the xy -plane, line l is given by the equation 2_x_ - 3_y_ = 5. If line l passes through the point (a ,1), what is the value of a ?
The equation of line l relates x -values and y -values that lie along the line. The question is asking for the x -value of a point on the line whose y -value is 1, so we are looking for the x -value on the line when the y-value is 1. In the equation of the line, plug 1 in for y and solve for x:
2_x_ - 3(1) = 5
2_x_ - 3 = 5
2_x_ = 8
x = 4. So the missing x-value on line l is 4.
Compare your answer with the correct one above
For the line
Which one of these coordinates can be found on the line?
To test the coordinates, plug the x-coordinate into the line equation and solve for y.
y = 1/3x -7
Test (3,-6)
y = 1/3(3) – 7 = 1 – 7 = -6 YES!
Test (3,7)
y = 1/3(3) – 7 = 1 – 7 = -6 NO
Test (6,-12)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (6,5)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (9,5)
y = 1/3(9) – 7 = 3 – 7 = -4 NO
Compare your answer with the correct one above
Consider the lines described by the following two equations:
4y = 3x2
3y = 4x2
Find the vertical distance between the two lines at the points where x = 6.
Since the vertical coordinates of each point are given by y, solve each equation for y and plug in 6 for x, as follows:
Taking the difference of the resulting y -values give the vertical distance between the points (6,27) and (6,48), which is 21.
Compare your answer with the correct one above
The equation of a line is: 2x + 9y = 71
Which of these points is on that line?
Test the difference combinations out starting with the most repeated number. In this case, y = 7 appears most often in the answers. Plug in y=7 and solve for x. If the answer does not appear on the list, solve for the next most common coordinate.
2(x) + 9(7) = 71
2x + 63 = 71
2x = 8
x = 4
Therefore the answer is (4, 7)
Compare your answer with the correct one above
Solve the following system of equations:
–2x + 3y = 10
2x + 5y = 6
Since we have –2x and +2x in the equations, it makes sense to add the equations together to give 8y = 16 yielding y = 2. Then we substitute y = 2 into one of the original equations to get x = –2. So the solution to the system of equations is (–2, 2)
Compare your answer with the correct one above
Which point lies on this line?
Test the coordinates to find the ordered pair that makes the equation of the line true:
Compare your answer with the correct one above
Which of the following lines contains the point (8, 9)?
In order to find out which of these lines is correct, we simply plug in the values and
into each equation and see if it balances.
The only one for which this will work is
Compare your answer with the correct one above
Which of the following sets of coordinates are on the line ?
when plugged in for
and
make the linear equation true, therefore those coordinates fall on that line.
Because this equation is true, the point must lie on the line. The other given answer choices do not result in true equalities.
Compare your answer with the correct one above
Which of the following points can be found on the line ?
We are looking for an ordered pair that makes the given equation true. To solve, plug in the various answer choices to find the true equality.
Because this equality is true, we can conclude that the point lies on this line. None of the other given answer options will result in a true equality.
Compare your answer with the correct one above
Which of the following points is not on the line ?
To figure out if any of the points are on the line, substitute the and
coordinates into the equation. If the equation is incorrect, the point is not on the line. For the point
:
So, is not on the line.
Compare your answer with the correct one above
At what point do these two lines intersect?
If two lines intersect, that means that at one point, the and
values are the same. Therefore, we can use substitution to solve this problem.
Let's substitute in for
in the other equation. Then, solve for
:
Now, we can substitute this into either equation and solve for :
With these two values, the point of intersection is
Compare your answer with the correct one above
At what point do these two lines intersect?
If two lines intersect, that means that their and
values are the same at one point. Therefore, we can use substitution to solve this problem.
First, let's write these two formulas in slope-intercept form. First:
Then, for the second line:
Now, we can substitute in for
in our second equation and solve for
, like so:
Now, we can substitute this value into either equation to solve for .
Therefore, our point of intersection is
Compare your answer with the correct one above
Figure NOT drawn to scale.
On the coordinate axes shown above, the shaded triangle has the following area:
Evaluate .
The lengths of the horizontal and vertical legs of the triangle correspond to the -coordinate
of the
-intercept and the
-coordinate
of the
-intercept. The area of a right triangle is half the product of the lengths of its legs
and
. The length of the vertical leg is
, so, setting
and
, and solving for
:
Therefore, the -intercept of the line containing the hypotenuse is
. The slope of the line given the coordinates of its intercepts is
.
substituting:
.
Substituting for and
in the slope-intercept form of the equation of a line,
,
the line has equation
.
Substituting for
and 6 for
and solving for
, we find the
-coordinate
of the point on the line with -coordinate 6:
Compare your answer with the correct one above
Lines P and Q are parallel. Find the value of .
Since these are complementary angles, we can set up the following equation.
Now we will use the quadratic formula to solve for .
Compare your answer with the correct one above
The table and graph describe two different particle's travel over time. Which particle has a lower minimum?
This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.
Step 1: Identify the minimum of the table.
Using the table find the time value where the lowest distance exists.
Recall that the time represents the values while the distance represents the
values. Therefore the ordered pair for the minimum can be written as
.
Step 2: Identify the minimum of the graph
Recall that the minimum of a cubic function is known as a local minimum. This occurs at the valley where the vertex lies.
For this particular graph the vertex is at .
Step 3: Compare the minimums from step 1 and step 2.
Compare the value coordinate from both minimums.
Therefore, the graph has the lowest minimum.
Compare your answer with the correct one above
Which line below is parallel to y – 2 = ¾x ?
y – 2 = ¾x is y = ¾x + 2 in slope intercept form (y=mx + b where m is the slope and b is the y-intercept). In this line, the slope is ¾. Parallel lines have the same slope.
Compare your answer with the correct one above
A line passes through the points and
. Which of the following lines is parallel to this line?
Lines are parallel if they have the same slope. First, let's find the slope of the line between and
.
So we are looking for a line with a slope of 2. We'll go through the answer choices.
The line between the points and
:
. This is the same slope, so the lines are parallel, and this is the correct answer. We'll go through the rest of the answer choices for completeness.
: This is in the form
, where
is the slope. Here the slope is
, so this is incorrect.
: Here the slope is
, so this is again incorrect.
: The slope is
, which is the negative reciprocal of 2. This line is perpendicular, not parallel, to the line in question.
The line between the points and
:
, also incorrect.
Compare your answer with the correct one above
Which pair of linear equations represent parallel lines?
Parallel lines will always have equal slopes. The slope can be found quickly by observing the equation in slope-intercept form and seeing which number falls in the "" spot in the linear equation
,
We are looking for an answer choice in which both equations have the same value. Both lines in the correct answer have a slope of 2, therefore they are parallel.
Compare your answer with the correct one above
Which of the following lines is parallel to:
First write the equation in slope intercept form. Add to both sides to get
. Now divide both sides by
to get
. The slope of this line is
, so any line that also has a slope of
would be parallel to it. The correct answer is
.
Compare your answer with the correct one above
All of the following systems of equations have exactly one point of intersection EXCEPT __________.
In order for two lines to intersect exactly once, they can't be parallel; thus, their slopes cannot be equal. If two lines have slopes that are indeed equal, these lines are parallel. Parallel lines either overlap infinitely or they never meet. If they overlap, they intersect at infinitely many points (which is not the same as intersecting exactly once).
In other words, we are looking for the system of equations with lines that are parallel, because then they will either intersect infinitely many times, or not at all. If the lines are not parallel, they will intersect exactly once.
The only system of equations that consists of parallel lines is the one that consists of the lines 4x - 3y = 2 and 6y = 8x + 9. To determine whether or not these lines are parallel, we need to find their slopes. It helps to remember that the slope of a line in the standard form Ax + By = C is equal to -A/B. (Alternatively, you can solve for the slopes by rearranging both lines to slope-intercept form).
The line 4x - 3y = 2 is already in standard form, so its slope is -4/-3 = 4/3.
The line 6y = 8x + 9 is not in standard form, so we must rearrange it a little bit. First let's subtract 6y from both sides.
0 = 8x - 6y + 9
Then we can subtract 9 from both sides.
8x - 6y = -9
Now that the equation is in standard form, the slope is -8/-6 = 4/3.
Thus, these two lines are parallel, so they will either intersect infinitely many times, or not at all.
If we check all of the other systems of equations, we will find that each consists of lines that aren't parallel. Thus, all the other choices consist of lines that intersect exactly once.
The answer is the system of lines 4x - 3y = 2 and 6y = 8x + 9.
Compare your answer with the correct one above