Graphing Linear Functions - SAT Subject Test in Math II

Card 0 of 1

Question

Circle

Note: Figure NOT drawn to scale.

Refer to the above figure. The circle has its center at the origin; the line is tangent to the circle at the point indicated. What is the equation of the line in slope-intercept form?

Answer

A line tangent to a circle at a given point is perpendicular to the radius from the center to that point. That radius, which has endpoints , has slope

.

The line, being perpendicular to this radius, will have slope equal to the opposite of the reciprocal of that of the radius. This slope will be . Since it includes point , we can use the point-slope form of the line to find its equation:

Compare your answer with the correct one above

Tap the card to reveal the answer