Card 0 of 3
A trapezoid has a base of length 4, another base of length s, and a height of length s. A square has sides of length s. What is the value of s such that the area of the trapezoid and the area of the square are equal?
In general, the formula for the area of a trapezoid is (1/2)(a + b)(h), where a and b are the lengths of the bases, and h is the length of the height. Thus, we can write the area for the trapezoid given in the problem as follows:
area of trapezoid = (1/2)(4 + s)(s)
Similarly, the area of a square with sides of length a is given by _a_2. Thus, the area of the square given in the problem is _s_2.
We now can set the area of the trapezoid equal to the area of the square and solve for s.
(1/2)(4 + s)(s) = _s_2
Multiply both sides by 2 to eliminate the 1/2.
(4 + s)(s) = 2_s_2
Distribute the s on the left.
4_s_ + _s_2 = 2_s_2
Subtract _s_2 from both sides.
4_s_ = _s_2
Because s must be a positive number, we can divide both sides by s.
4 = s
This means the value of s must be 4.
The answer is 4.
Compare your answer with the correct one above
Note: Figure NOT drawn to scale.
The white region in the above diagram is a trapezoid. What percent of the above rectangle, rounded to the nearest whole percent, is blue?
The area of the entire rectangle is the product of its length and width, or
.
The area of the white trapezoid is one half the product of its height and the sum of its base lengths, or
Therefore, the blue polygon has area
.
This is
of the rectangle.
Rounded, this is 70%.
Compare your answer with the correct one above
Refer to the above diagram. .
Give the area of Quadrilateral .
, since both are right; by the Corresponding Angles Theorem,
, and Quadrilateral
is a trapezoid.
By the Angle-Angle Similarity Postulate, since
and
(by reflexivity),
,
and since corresponding sides of similar triangles are in proportion,
, the larger base of the trapozoid;
The smaller base is .
, the height of the trapezoid.
The area of the trapezoid is
Compare your answer with the correct one above