Card 0 of 17
Add the polynomials.
We can add together each of the terms of the polynomial which have the same degree for our variable.
Compare your answer with the correct one above
If 3 less than 15 is equal to 2x, then 24/x must be greater than
Set up an equation for the sentence: 15 – 3 = 2x and solve for x. X equals 6. If you plug in 6 for x in the expression 24/x, you get24/6 = 4. 4 is only choice greater than a.
Compare your answer with the correct one above
Given a♦b = (a+b)/(a-b) and b♦a = (b+a)/(b-a), which of the following statement(s) is(are) true:
I. a♦b = -(b♦a)
II. (a♦b)(b♦a) = (a♦b)2
III. a♦b + b♦a = 0
Notice that - (a-b) = b-a, so statement I & III are true after substituting the expression. Substitute the expression for statement II gives ((a+b)/(a-b))((a+b)/(b-a))=((a+b)(b+a))/((-1)(a-b)(a-b))=-1 〖(a+b)〗2/〖(a-b)〗2 =-((a+b)/(a-b))2 = -(a♦b)2 ≠ (a♦b)2
Compare your answer with the correct one above
If a positive integer a is divided by 7, the remainder is 4. What is the remainder if 3_a_ + 5 is divided by 3?
The best way to solve this problem is to plug in an appropriate value for a. For example, plug-in 11 for a because 11 divided by 7 will give us a remainder of 4.
Then 3_a + 5_, where a = 11, gives us 38. Then 38 divided by 3 gives a remainder of 2.
The algebra method is as follows:
a divided by 7 gives us some positive integer b, with a remainder of 4.
Thus,
a / 7 = b 4/7
a / 7 = (7_b +_ 4) / 7
a = (7_b_ + 4)
then 3_a + 5 =_ 3 (7_b_ + 4) + 5
(3_a_+5)/3 = \[3(7_b_ + 4) + 5\] / 3
= (7_b_ + 4) + 5/3
The first half of this expression (7_b_ + 4) is a positive integer, but the second half of this expression (5/3) gives us a remainder of 2.
Compare your answer with the correct one above
Compare your answer with the correct one above
Simplify:
Cancel by subtracting the exponents of like terms:
Compare your answer with the correct one above
What is the remainder when the polynomial is divided by
?
By the remainder theorem, if a polynomial is divided by the linear binomial
, the remainder is
- that is, the polynomial evaluated at
. The remainder of dividing
by
is the dividend evaluated at
, which is
Compare your answer with the correct one above
Find the degree of the polynomial
The degree of the polynomial is the largest degree of any one of it's individual terms.
The degree of is
The degree of is
The degree of is
The degree of is
The degree of is
is the largest degree of any one of the terms of the polynomial, and so the degree of the polynomial is
.
Compare your answer with the correct one above
Give the degree of the polynomial
The polynomial has one term, so its degree is the sum of the exponents of the variables:
Compare your answer with the correct one above
Give the degree of the polynomial
The degree of a polynomial in more than one variable is the greatest degree of any of the terms; the degree of a term is the sum of the exponents. The degrees of the terms in the given polynomial are:
The degree of the polynomial is the greatest of these degrees, 100.
Compare your answer with the correct one above
Give the degree of the polynomial
The degree of a polynomial in one variable is the greatest exponent of any of the powers of the variable. The terms have as their exponents, in order, 44, 20, 10, and 100; the greatest of these is 100, which is the degree.
Compare your answer with the correct one above
Give the degree of the polynomial
The degree of a polynomial in one variable is the greatest exponent of any of the powers of the variable. The terms have as their exponents, in order, 10, 20, 30, and 40; 40 is the greatest of them and is the degree of the polynomial.
Compare your answer with the correct one above
Which of these polynomials has the greatest degree?
The degree of a polynomial is the highest degree of any term; the degree of a term is the exponent of its variable or the sum of the exponents of its variables, with unwritten exponents being equal to 1. For each term in a polynomial, write the exponent or add the exponents; the greatest number is its degree. We do this with all four choices:
:
A constant term has degree 0.
The degree of this polynomial is 5.
The degree of this polynomial is 5.
The degree of this polynomial is 5.
The degree of this polynomial is 5.
All four polynomials have the same degree.
Compare your answer with the correct one above
Which of the following monomials has degree 999?
The degree of a monomial term is the sum of the exponents of its variables, with the default being 1.
For each monomial, this sum - and the degree - is as follows:
:
:
:
(note - 999 is the coefficient)
:
is the correct choice.
Compare your answer with the correct one above
and
What is ?
so we multiply the two function to get the answer. We use
Compare your answer with the correct one above
Multiply:
This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
Step 1: Distribute the negative to the second polynomial:
Step 2: Combine like terms:
Compare your answer with the correct one above