Card 0 of 20
"The Place of Lesion Studies in Neuroscience" by Samantha Winter (2013)
It’s easy to forget that the study of neuroscience originated from non-normalized, non-statistically appraised methods like lesion studies. It’s equally easy, with the advent of sophisticated technology, to render such a method obsolete. A small group of neuroscientists today make a case for the reinstitution of lesion studies—the study of abnormal brains with damaged regions in order to better understand the brain—into the twenty-first-century cognitive neuroscience realm. Their suggestion is bold, but their argument is justified.
Cognitive neuroscientists advocate for the use of convergent methods. Many of them argue that with the limitations of our existing techniques, convergent evidence is imperative for sound research. If this is the case, why ignore a method that has potential for implying causality in a domain dominated by correlational research? Rather than advocating for a single method, neuroscientists should take their own advice and use convergent techniques. Sound research should combine a variety of techniques to examine both causal relationships and overcome the individual shortcomings of each method through the use of many.
Lesion studies are also significantly more beneficial now than they were in earlier times. Neuroimaging methods have enhanced our understanding of what contributes to the brain problems most often encountered, and more refined experiments have been developed to confirm the findings from the more unreliable lesion studies. This transformation allows lesion studies to be included alongside the other systems as a mechanism for understanding the human brain.
The author would most likely agree with which of the following statements?
The main argument of this passage is that numerous techniques should serve to compliment each other and produce the best results. Presumably, the author’s opinion in neuroscience would likely apply to research overall. The author argues against "it is important to eliminate old methods and techniques to avoid being archaic in all fields hh. Scientific research should receive more financial support." There is no indication that financial support has any contribution to the author’s argument, therefore "scientific research should receive more financial support" is incorrect. Finally, "the study of abnormality should be the primary focus of all research" is incorrect because the support of lesion studies in this passage is not derived from a desire to study abnormality, but to understand regular functioning using a method that assesses abnormal functioning.
Compare your answer with the correct one above
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. “The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
The author of the passage is most likely __________.
As the title of the passage is "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" and its subject is flower color, leaf size, and other scientific phenomena that have to do with plants, trees, and especially flowers, we can safely infer that of the given answer choices, the author is most likely a botanist. While the author does discuss flowers at different latitudes, which may suggest "geographer," and different atmospheric conditions, which may suggest "meteorologist," he only broaches these topics because of how they intersect with his primary topic of flowers and plants.
Compare your answer with the correct one above
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
This passage is taken from a longer work. Based on what you have read, which of the following would you most expect to find in the paragraphs immediately following those in the passage?
In the concluding sentences of the passage, the author is asserting that Grisebach's interpretation is the correct one, not that of the "recent writer" quoted in the first paragraph. The author is also bringing up evidence (Joseph Hooker's enumerated observations) to prove his point. One could thus reasonably expect to encounter "more evidence as to why Grisebach’s theory is the correct one" if one read on further in the larger text of which this passage is a small part.
Compare your answer with the correct one above
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
Based on what is said in the passage, the author most likely believes that __________.
This is a tricky question because in the passage, the author never directly states his opinion about what hummingbirds eat; readers have to infer it based on the evidence he presents. The author begins the passage by stating that while old scientists used to think hummingbirds ate only flower nectar, modern writers think that they eat “largely, and in some cases wholly,” on insects. He then presents evidence suggesting that hummingbirds eat insects, and in discussing the contents of hummingbirds’ stomachs, says that scientists sometimes find both insects and honey. For the rest of the paragraph, he provides evidence suggesting that hummingbirds eat insects.
What can we infer from this? Well, we can tell that it’s not likely that the author thinks hummingbirds eat only flower nectar, because he provides evidence supporting the idea that they eat insects. This means that we can also discard the answer choice “hummingbirds eat neither flower nectar nor insects.” It’s quite reasonable to think that the author thinks that “hummingbirds eat a mixture of flower nectar and insects” because he mentions that sometimes honey is found along with insects in hummingbirds’ stomachs. So, we need to figure out whether he probably believes that they eat mostly insects or mostly flower nectar. Let’s look at how the author phrases his description of the contents of hummingbirds’ stomachs: “in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey.” So, if “in almost every instance” the hummingbird stomachs examined were “full of insects,” but “sometimes, but not generally” honey was also found, the correct answer must be “hummingbirds eat a mixture of flower nectar and insects, but mostly insects.”
Compare your answer with the correct one above
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
Which of the following inferences does the passage expect its readers to make?
Let’s consider each of the answer choices to identify the correct one.
“The author is the first scientist to ever have investigated what hummingbirds eat.” - This cannot be true, because the author begins the passage by saying “The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects.” He also cites numerous other scientists’ opinions throughout the passage, so he can’t be the first person to have investigated what hummingbirds eat.
“Fly-catchers are a type of insect.” - The passage mentions fly-catchers in the following sentence: “Many \[hummingbirds\] in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig.” This is a tricky answer choice in that it’s easy to misread the sentence and think that “just like flycatchers” refers to “other small insects” when in fact it refers to the act of “catching.” The sentence is saying that hummingbirds catch insects in the same manner as fly-catchers, not that fly-catchers are a type of insect. Plus, we are being asked to identify an inference readers are expected to make, and if this sentence did mean that fly-catchers were insects, it would be overtly telling us this, and there would be nothing we’d have to infer.
“Scientists rarely learn about hummingbirds by dissecting them.” - This answer choice is proven wrong by the following sentence: “Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey.”
“If a hummingbird eats gnats, it will not eat honey.” - Given that the questions of whether hummingbirds eat insects or honey and in what proportions is the topic of the passage, it may be easy to choose this answer choice because it seems like the one closest to the passage’s main idea; however, nothing in the passage supports this assertion.
“If a hummingbird consumes flower nectar, this nectar will turn into the honey that can be found in its stomach.” - This is the correct answer! The author initially states that “All the early writers down to Buffon believed that \[hummingbirds\] lived solely on the nectar of flowers”; however, he later states that “Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey.” The author does not address the idea that flower nectar and honey could be different substances, and instead expects the reader to treat these as one source of food.
Compare your answer with the correct one above
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
Based on the way the term is used in passage, what is “the Polytmus”?
Let’s look at the spot in the passage where “the Polytmus” is mentioned:
“Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail.’”
From this context, we can tell that the Polytmus isn’t a carnivorous hummingbird-eating mammal, or a species of flower: it is a hummingbird. It is mentioned in the context of flying, so it can’t refer to a fledgling hummingbird that can’t yet fly. So, is it mentioning a type of hummingbird with particularly bright coloring, or one with a long tail? Mr. Gosse mentions the Polytmus in particular because observers can easily see it contort in midair “from the effect that such motions have on the long feathers of the tail.” So, the Polytmus must be “a type of hummingbird with a long tail.”
Compare your answer with the correct one above
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
What can we infer from the underlined sentence, “Many \[hummingbirds\] in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig"?
What does the underlined sentence tell us? It refers to “Many” hummingbirds, not “all hummingbirds,” so we can’t infer that what it says holds true for all hummingbirds. This allows us to eliminate the answer choices that begin with “all hummingbirds,” leaving us with “Gnats are rarely found near bodies of water,” “Some hummingbirds live in the desert,” and “Some hummingbirds live near a body of water.” Regarding gnats, the sentence doesn’t suggest that they are rarely found near bodies of water, since it mentions hummingbirds “may be seen catching gnats and other small insects just like fly-catchers” and implies that they do this by “sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig.” We’re down to two answer choices: whether some hummingbirds live in the desert or near a body of water. The sentence doesn’t mention anything about deserts; on the contrary, it tells us that “many” hummingbirds catch gnats. The way that these hummingbirds do this begins with them “sitting on a dead twig over water.” So, we are told that many hummingbirds catch gnats and that in catching gnats, they sit over water. From this, we can infer that many hummingbirds live near bodies of water.
Compare your answer with the correct one above
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
It can reasonably be inferred from the passage that which of the following is true?
In the last paragraph, the experiment mentioned used sixty-four flowers which were over-pollinated, and a further sixty four flowers which were under-pollinated. This makes a total of one hundred and twenty eight flowers.
Compare your answer with the correct one above
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
Based on the first text the author describes, the probable reason for the name given to the penguins was to __________.
The author describes the possible root of the penguins name in the roteiro, saying that “the word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.” Thus, the probable reason for the name is that it alludes to the nature of the penguins.
Compare your answer with the correct one above
Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)
Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.
I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.
Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of T inea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.
This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."
It can reasonably be inferred from the passage that __________.
We know that someone wrote about the moths in the 17th century and called them "the 'bee-wolf'," so it doesn't seem likely that the problems they cause bee keepers only developed recently. We also know that the moths are quite fast from a description of their speed in the last paragraph. The author also states that the bees post “sentinels” to guard against the moths. We cannot tell from the passage if the author likes honey or not. The only thing we can really infer is that the author is a keen bee keeper, as he says in the passage that: “I have patiently studied \[the bee-moth's\] habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives.” This tells us he has kept and studied bees for many years.
Compare your answer with the correct one above
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
A scientist studied the relatedness of several reptilian species solely by investigating fossil evidence and has concluded that physical characteristics alone are enough to determine species relatedness. Would this scientist agree with the claims made by phylogenetic research?
The scientist studied relatedness based on the fossil record of physical traits. Having studied this, he would not agree with the notion that phylogenetics may better explain relatedness via genetic factors. The rest of the choices are incorrect because they are not supported by the passage.
Compare your answer with the correct one above
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
According to the passage, the hemoglobin structure of a bat is most similar to which of the following animals?
The spider monkey is the only mammalian species listed in the choices. The other choices are birds, which the passage states are less similar to bats than mammals. Therefore, also being a mammalian species, spider monkey is the correct answer.
Compare your answer with the correct one above
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
What can we infer preceded this paragraph?
In order to infer what likely “preceded,” or came before, this passage, we should take at what the passage is talking about right when it starts. The passage’s first sentence says, “The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding.” The “so far quoted” means so far said or provided and tells us that the writer has been talking about “examples of protective resemblance.” This means that the writer most likely discussed “animals that defend themselves by looking like things in a stable environment” in the part of the book that comes right before the passage.
Compare your answer with the correct one above
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
Based on the passage, what can we infer about the weasel?
The weasel is mentioned in two places in the passage, both in the passage’s last paragraph, both reproduced here:
“But in winter, the entire coat \[of the stoat\], save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.”
What does the passage tell us about the weasel? Well, we can infer that it is in some way like the stoat, because the passage says “A similar example is afforded by the weasel” right after describing how the stoat’s fur changes color. We are also told that it is carnivorous, but this is not an inference we have to make, and it doesn’t relate to any of the answer choices. The best answer choice is “Like the stoat, it also changes its coat color.” This captures the specific similarity between the stoat and weasel being discussed when the author writes, “A similar example is afforded by the weasel.”
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Based on the first paragraph, the author would be most likely to support __________.
One of the author’s main points in the first paragraph is that harsher legal repercussions are needed for those who release damaging invasive species into the United States. This is clear when the author writes, “The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable.” Thus, we can infer that the author would be most likely to support “a law severely punishing those who introduce invasive species that damage the environment.” Though the author does discuss the potential for someone to introduce invasive species to the South, he is not in favor of this, and he clearly doesn’t want to grant Howell clemency for his actions. (Furthermore, “clemency” somewhat implies that Howell has been charged with a crime, and the author explains that this isn’t the case.)
The author does state, “The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality,” and we can therefore assume that he might support cataloguing the amount of money invasive species have cost the United States. However, this inference requires a much larger logical leap than does the one that the author would support harsher legal punishments for those who introduce damaging invasive species, making “a law severely punishing those who introduce invasive species that damage the environment” the best answer. If you’re unsure when picking between answers to an inference question, it’s usually a good idea to see which one is more relevant to the passage’s topic and has the most evidence supporting it.
Compare your answer with the correct one above
dapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
If the author were to learn that the gypsy moth could be efficiently repelled from trees by coating them with a cheap, natural substance, he would likely feel __________.
Throughout the passage, the author makes it apparent that he feels that the gypsy moth is a very damaging invasive species that causes a lot of problems in the United States. He calls it a “winged calamity” and, in the third paragraph, describes how it spread:
“The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!”
From this paragraph, we can tell that if the author were to learn that the gypsy moth could be efficiently stopped from damaging trees, he would be most likely to feel “exuberant,” or excited and happy. Nothing in the passage supports any of the other answers.
Compare your answer with the correct one above
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
Which of the following would you LEAST expect to be discussed elsewhere in the book from which this passage was taken?
The passage describes how humans use the eider down produced by eider ducks as a commodity for its insulating properties. Given this focus, along with the title of the book from which the passage is taken, The Utility of Birds, we can assume that other topics discussed in the books would deal with ways in which birds are useful to humans. “The use of tropical birds’ feathers as hat decorations,” “the raising of chickens for their eggs,” “falconry,” and “the practice of sending messages by carrier pigeon” all deal with ways in which birds are useful to humans, but “The types of birds encountered by the first Antarctic explorers” does not relate to how birds are useful to humans, so it would be least likely to be discussed elsewhere in a book called The Utility of Birds and is the correct answer.
Compare your answer with the correct one above
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
Which of the following most likely happened after the Labrador feather voyages were no longer organized?
The first paragraph tells us that the Labrador feather voyages were organized to keep up with an increased demand for eider down caused by an increased North American population. The passage doesn’t mention any alternative sources of eider down being used after the Labrador feather voyages were no longer organized. Therefore, we can eliminate the answer choice “The price of eider down in North America plummeted” since if eider down became more rare, its price would likely have gone up, not down. We can also eliminate the answer choice “Eider down began to be used for other purposes in North America” as this is not suggested in the passage at all and would require more information to be supported. “The quality of bedding in North America became preferable to that found in Iceland” cannot be correct either, as in the first paragraph, the author claims that eider down makes the best bedding, and if eider down becomes rare in North America, it’s not likely that the quality of North American bedding will exceed that of bedding made in Iceland, where eider down is assumed to be more available. “A population of the Labrador duck was reestablished.” cannot be the correct answer because the passage tells us that the Labrador duck went extinct, and if a species is extinct, there are no living members left from which populations of it could be reestablished. This leaves us with one answer, the correct one: “North American populations had to import eider down from Iceland.” This makes sense, as if less eider down were available in North America but there was still a desire for it, it would be likely to be imported from elsewhere in the world.
Compare your answer with the correct one above
Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)
This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.
When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.
In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.
It can reasonably be inferred from the passage that __________.
We can infer that because the villagers' work is near the cave in summer and they use the cave's ice, there is some form of civilization in proximity to the cave. We know from the villager's use of the ice to melt it into water to drink that it is unlikely to be unsanitary. Bell's opinion is not commented on and is therefore, in the opinion of the author, possibly correct. The cave is in the country of Thorn and is at the base of the Carpathian Mountains, as is stated in the first paragraph.
Compare your answer with the correct one above
"The Cell Cycle" by Joseph Ritchie (2014)
The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.
Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.
The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.
The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.
About how much time does a cell spend undergoing mitosis in the cell cycle?
At the beginning of the second paragraph, the passage says, "Roughly ninety percent of the cell cycle is spent in interphase." Based on this information, and the fact that we are told that the cell cycle consists of "two main phases: interphase and mitosis," we can thus infer that about ten percent of a cell's time in the cell cycle is spent undergoing mitosis.
Compare your answer with the correct one above