Graphs of Polynomial Functions - Pre-Calculus

Card 0 of 13

Question

Give the -intercept of the graph of the function

Round to the nearest tenth, if applicable.

Answer

The -intercept is , where :

The -intercept is .

Compare your answer with the correct one above

Question

Which of the following is an accurate graph of ?

Answer

is a parabola, because of the general structure. The parabola opens downward because .

Solving tells the x-value of the x-axis intercept;

The resulting x-axis intercept is: .

Setting tells the y-value of the y-axis intercept;

The resulting y-axis intercept is:

Compare your answer with the correct one above

Question

Graph the following function and identify the zeros.

Answer

This question tests one's ability to graph a polynomial function.

For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).

Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.

Step 1: Use algebraic technique to factor the function.

Separating the function into two parts...

Factoring a negative one from the second set results in...

Factoring out from the first set results in...

The new factored form of the function is,

.

Now, recognize that the first binomial is a perfect square for which the following formula can be used

since

thus the simplified, factored form is,

.

Step 2: Identify the roots of the function.

To find the roots of a function set its factored form equal to zero and solve for the possible x values.

Step 3: Create a table of pairs.

The values in the table are found by substituting in the x values into the function as follows.

Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Screen shot 2016 01 13 at 9.55.24 am

Compare your answer with the correct one above

Question

Graph the function and identify its roots.

Answer

This question tests one's ability to graph a polynomial function.

For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).

Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.

Step 1: Use algebraic technique to factor the function.

Recognize that the binomial is a perfect square for which the following formula can be used

since

thus the simplified, factored form is,

.

Step 2: Identify the roots of the function.

To find the roots of a function set its factored form equal to zero and solve for the possible x values.

Step 3: Create a table of pairs.

The values in the table are found by substituting in the x values into the function as follows.

Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Question4

Compare your answer with the correct one above

Question

Graph the function and identify its roots.

Answer

This question tests one's ability to graph a polynomial function.

For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).

Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.

Step 1: Use algebraic technique to factor the function.

Recognize that the binomial is a perfect square for which the following formula can be used

since

thus the simplified, factored form is,

.

Step 2: Identify the roots of the function.

To find the roots of a function set its factored form equal to zero and solve for the possible x values.

Step 3: Create a table of pairs.

The values in the table are found by substituting in the x values into the function as follows.

Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Question6

Compare your answer with the correct one above

Question

Graph the function and identify the roots.

Answer

This question tests one's ability to graph a polynomial function.

For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).

Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.

Step 1: Use algebraic technique to factor the function.

Recognize that the binomial is a perfect square for which the following formula can be used

since

thus the simplified, factored form is,

.

Step 2: Identify the roots of the function.

To find the roots of a function set its factored form equal to zero and solve for the possible x values.

Step 3: Create a table of pairs.

The values in the table are found by substituting in the x values into the function as follows.

Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Question12

Compare your answer with the correct one above

Question

Write the quadratic function for the graph:

Varsity9

Answer

Method 1:

The x-intercepts are . These values would be obtained if the original quadratic were factored, or reverse-FOILed and the factors were set equal to zero.

For , . For , . These equations determine the resulting factors and the resulting function; .

Multiplying the factors and simplifying,

.

Answer: .

Method 2:

Use the form , where is the vertex.

is , so , .

Answer:

Compare your answer with the correct one above

Question

Write the quadratic function for the graph:

Varsity8

Answer

Because there are no x-intercepts, use the form , where vertex is , so , , which gives

Compare your answer with the correct one above

Question

Which could be the equation for this graph?

Polynomial

Answer

This graph has zeros at 3, -2, and -4.5. This means that , , and . That last root is easier to work with if we consider it as and simplify it to . Also, this is a negative polynomial, because it is decreasing, increasing, decreasing and not the other way around.

Our equation results from multiplying , which results in .

Compare your answer with the correct one above

Question

Write the equation for the polynomial in this graph:

Graph 1 write funct

Answer

The zeros for this polynomial are .

This means that the factors are equal to zero when these values are plugged in for x.

multiply both sides by 2

so one factor is

multiply both sides by 3

so one factor is

so one factor is

Multiply these three factors:

Compare your answer with the correct one above

Question

Write the equation for the polynomial shown in this graph:

Graph 2 write funct

Answer

The zeros of this polynomial are . This means that the factors equal zero when these values are plugged in.

One factor is

One factor is

The third factor is equivalent to . Set equal to 0 and multiply by 2:

Multiply these three factors:

The graph is negative since it goes down then up then down, so we have to switch all of the signs:

Compare your answer with the correct one above

Question

Write the equation for the polynomial in this graph:

Graph 3 write funct

Answer

The zeros for this polynomial are . That means that the factors are equal to zero when these values are plugged in.

or equivalently multiply both sides by 4

the first factor is

multiply both sides by 3

the second factor is

the third factor is

Multiply the three factors:

Compare your answer with the correct one above

Question

Write the equation for the polynomial in the graph:

Graph 4 write funct

Answer

The zeros of the polynomial are . That means that the factors equal zero when these values are plugged in.

The first factor is or equivalently multiply both sides by 5:

The second and third factors are and

Multiply:

Because the graph goes down-up-down instead of the standard up-down-up, the graph is negative, so change all of the signs:

Compare your answer with the correct one above

Tap the card to reveal the answer