Card 0 of 20
A parallelogram has the base length of and the altitude of
. Give the area of the parallelogram.
The area of a parallelogram is given by:
Where is the base length and
is the corresponding altitude. So we can write:
Compare your answer with the correct one above
A parallelogram has a base length of which is 3 times longer than its corresponding altitude. The area of the parallelogram is 12 square inches. Give the
.
Base length is so the corresponding altitude is
.
The area of a parallelogram is given by:
Where:
is the length of any base
is the corresponding altitude
So we can write:
Compare your answer with the correct one above
What is the area of the parallelogram?
The area of a parallelogram is determined using the equation:
In this problem:
Compare your answer with the correct one above
Find the area:
The area of a parallelogram can be determined using the following equation:
Therefore,
Compare your answer with the correct one above
The length of the shorter diagonal of a rhombus is 40% that of the longer diagonal. The area of the rhombus is . Give the length of the longer diagonal in terms of
.
Let be the length of the longer diagonal. Then the shorter diagonal has length 40% of this. Since 40% is equal to
, 40% of
is equal to
.
The area of a rhombus is half the product of the lengths of its diagonals, so we can set up, and solve for , in the equation:
Compare your answer with the correct one above
The length of the shorter diagonal of a rhombus is two-thirds that of the longer diagonal. The area of the rhombus is square yards. Give the length of the longer diagonal, in inches, in terms of
.
Let be the length of the longer diagonal in yards. Then the shorter diagonal has length two-thirds of this, or
.
The area of a rhombus is half the product of the lengths of its diagonals, so we can set up the following equation and solve for :
To convert yards to inches, multiply by 36:
Compare your answer with the correct one above
The longer diagonal of a rhombus is 20% longer than the shorter diagonal; the rhombus has area . Give the length of the shorter diagonal in terms of
.
Let be the length of the shorter diagonal. If the longer diagonal is 20% longer, then it measures 120% of the length of the shorter diagonal; this is
of , or
.
The area of a rhombus is half the product of the lengths of its diagonals, so we can set up an equation and solve for :
Compare your answer with the correct one above
Refer to the above figure, which shows Parallelogram . You are given that
and
.
If you know the length of , then, of the following segments, choose the one whose length, if known, will allow us to calculate the area of Parallelogram
.
The area of a parallelogram is the product of the length of any one side, or its base, and the perpendicular distance to the opposite side, or its height. If we know , then we also know
, which is of the same length. We can take
to be the base, and the segement perpendicular to it,
, as the altitude. Therefore,
is the segment whose length we need to know.
Compare your answer with the correct one above
Note: Figure NOT drawn to scale.
Refer to the above figure, which shows Parallelogram . You are given that
and
.
,
.
.
Evaluate .
The area of a parallelogram is the product of the length of any one side, or its base, and the length of a segment perpendicular to that side, or its height.
One way to find the area is to multiply the length of side by its corresponding altitude,
. Since
and
,
.
Another way to find the area is to multiply the length of side by its corresponding altitude,
. Since
and the area is 9,600, we set up this equation and solve for
:
Compare your answer with the correct one above
Find the area of a parallelogram with a base of length 8 and a height of length 6.
The area of a parallelogram is
Compare your answer with the correct one above
What is the area of a parallelogram with a base of and a height of
?
Write the formula for the area of a parallelogram.
Substitute the dimensions.
Compare your answer with the correct one above
Find the area of a parallelogram if the base length is and the height is
.
Write the formula for thearea of a parallelogram.
Substitute the dimensions.
Compare your answer with the correct one above
Find the area of a parallelogram with a base of 4 and a height of 40.
Write the formula to find the area of a parallelogram.
Substitute the dimensions.
Compare your answer with the correct one above
Find the area of a parallelogram if the base and height are and
, respectively.
Write the formula for the area of a parallelogram.
Substitute the dimensions. Use the distributive property. The distibutive property means to multiply the monomial term, , to each term within the parentheses. Remember when like bases are multiplied, their exponents are added together. Thus resulting in the following area.
Compare your answer with the correct one above
Find the area of a parallelogram if both the base and height have a length of 10.
Write the area of the parallelogram.
Substitute the dimensions.
Compare your answer with the correct one above
Find the area of a parallelogram in if the base is
and the height is
.
Convert the base from feet to inches. There are in a foot. Multiply the base by
.
Write the area for a parallelogram.
Substitute the new base and the height.
Compare your answer with the correct one above
Find the area of a parallelogram with a base of and a height of
.
Write the formula to find the area of a parallelogram.
Substitute the dimensions. Use the distributive property.
Compare your answer with the correct one above
Find the area of a parallelogram if the base is 3 inches and the height is 8 inches.
Write the formula for the area of a parallelogram.
Substitute the dimensions.
Compare your answer with the correct one above
Find the area of a parallelogram with the base of and a height of
.
Write the formula for the area of a parallelogram.
Substitute the dimensions.
Remember, when multiplying fractions, multiply the numerators together and multiply the denominators together.
Compare your answer with the correct one above
Determine the area of a parallelogram with a base and height of .
Write the formula to find the area of a parallelogram. Substitute the dimensions.
Compare your answer with the correct one above