MCAT Biology › Substitution and Elimination Mechanisms
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
A scientist is studying the rate of reaction 1. He wants to double the rate of the reaction, but is unsure how to increase concentrations of the reactants. Which of the following is true?
Which of the following reactions is the nucleophile potassium tert-butoxide often used for?
Which of the following factors do NOT favor an SN2 reaction of an alkyl halide?
Which of the following compounds could NEVER undergo an E2 reaction when treated with potassium tert-butoxide?
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
Investigating reaction 2, you find that the reaction is initiated when a carbocation forms. Which of the following is likely true?
I. Concentration of the halide is the main determinant of reaction rate
II. The carbocation forms when the hydroxide removes the chlorine atom
III. The carbocation is planar
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
A scientist modifies reaction 1 by changing the reactant, removing a hydrogen from the central carbon and replacing it with a methyl group. The new reactant thus has two methyl groups and one hydrogen on the central carbon. What is true of reaction 1 following this modification? Assume the temperature remains constant and no catalyst is added.
When exposed to a good nucleophile, which molecule will most readily undergo an reaction?
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
In reaction 2, which of the following describe the rate limiting step?
I. It involves the formation of carbocation
II. It is favored by the presence of substituents on the central carbon
III. It involves a transition state, but no intermediate
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
The reaction depicted in reaction 1 takes place in solution with a solvent. What type of solvent is most likely to be preferred for the reaction to occur as written?
Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.
Reaction 1:
Reaction 2:
In reaction 1, a scientist is trying to modify the reaction by using a weaker nucleophile. Which of the following is a weaker nucleophile than what is used above (hydroxide ions)?