MCAT Biology › Protein Structure
Which of the following statements is NOT true regarding the comparison of the alpha-helix structure to the beta-sheet structure in proteins?
Collagen, the most abundant protein in the body, is an example of what type of protein?
Nuclear transport is a very important concept of study in modern cellular biology. Transport of proteins into the nucleus of an organism requires energy in the form of GTP, which is attached to a protein called Ras-related Nuclear protein (RAN).
RAN is a monomeric G protein found in both the cytosol as well as the nucleus and its phosphorylation state plays an important role in the movement of proteins into and out of the nucleus. Specifically, RAN-GTP and RAN-GDP binds to nuclear import and export receptors and carries them into or out of the nucleus. They also play a role in dropping off cargo that import and export receptors hold onto. RAN's functions are controlled by two other proteins: RAN guanine exchange factor (RAN-GEF) and RAN GTPase activating protein (GAP). RAN-GEF binds a GTP onto RAN, while RAN-GAP hydrolyzes GTP into GDP. As a result, there is a RAN-GTP and RAN-GDP concentration gradient that forms between the cytosol and nucleus.
One of the main roles of RAN is to bind to nuclear import and export receptors and carry them into or out of the nucleus. Given that import and export receptors are proteins, what can we say about the cooperativity displayed by RAN when it comes to binding to import and export proteins?
The term "denaturation," when used in conjunction with proteins or nucleic acids, refers to a change in structural characteristics primarily due to __________.
Amino acids are joined together to form polypeptides. Each amino acid is attached to another by a peptide bond.
What functional group is created when amino acids are joined together?
In 2013, scientists linked a cellular response called the unfolded protein response (UPR) to a series of neurodegenerative diseases, including such major health issues as Parkinson’s and Alzheimer’s Disease. According to their work, the unfolded protein response is a reduction in translation as a result of a series of enzymes that modify a translation initiation factor, eIF2, as below:
In the above sequence, the unfolded protein sensor binds to unfolded protein, such as the pathogenic amyloid-beta found in the brains of Alzheimer’s Disease patients. This sensor then phosphorylates PERK, or protein kinase RNA-like endoplasmic reticulum kinase. This leads to downstream effects on eIF2, inhibition of which represses translation. It is thought that symptoms of neurodegenerative disease may be a result of this reduced translation.
Which of the following is the LEAST important force that promotes protein folding?
In the crusade to create a vaccine for Poliomyelitis, Jonas Salk and Albert Sabin created two separate vaccines that proved to be successful in preventing Polio onset.
The Salk vaccine, which is given by standard injection, contained virus particles inactivated by an organic solvent. This method has the advantage of inactivating each of the three Polio strains with no bias.
Albert Sabin's vaccine, given by oral inoculation via sugar water, contained live virus particles that had been genetically attenuated. With this method, each of the three Polio strains acquired separate mutations that made them unable to infect the human host cells. Strain 2 in particular contained one single nucleotide polymorphism in the internal ribosomal entry site (IRES) that prevented successful viral replication.
The organic solvent used to inactivate the Poliovirus in the Salk vaccine significantly alters the viral capsid. For the purposes of this question, let us assume that the capsid proteins are bound together by multiple di-sulfide bonds. Given this information, which of the solvents listed below would be most effective in disrupting the Poliovirus capsid?
Hemoglobin is the principal oxygen-carrying protein in humans. It exists within erythrocytes, and binds up to four diatomic oxygen molecules simultaneously. Hemoglobin functions to maximize oxygen delivery to tissues, while simultaneously maximizing oxygen absorption in the lungs. Hemoglobin thus has a fundamentally contradictory set of goals. It must at once be opitimized to absorb oxygen, and to offload oxygen. Natural selection has overcome this apparent contradiction by making hemoglobin exquisitely sensitive to conditions in its microenvironment.
One way in which hemoglobin accomplishes its goals is through the phenomenon of cooperativity. Cooperativity refers to the ability of hemoglobin to change its oxygen binding behavior as a function of how many other oxygen atoms are bound to the molecule.
Fetal hemoglobin shows a similar pattern of cooperativity, but has unique binding characteristics relative to adult hemoglobin. Fetal hemoglobin reaches higher saturation at lower oxygen partial pressure.
Because of cooperativity, adult and fetal oxygen-hemoglobin dissociation curves appear as follows.
Beyond its ability to carry oxygen, hemoglobin is also effective as a blood buffer. The general reaction for the blood buffer system of hemoglobin is given below.
Because hemoglobin can act as a buffer in blood, it helps keep the pH constant. Which of the following portions of an amino acid can change with pH change?
Which of these choices correctly pairs the level of protein structure with an example of that level of structure?
Proteins can have a maximum of four levels of structure: primary, secondary, tertiary, and quaternary. Although the proteins can spontaneously fold to a functional conformation, there are a variety of denaturing agents that can be used to disrupt the folding strategies of proteins. Mercaptoethanol is an example of a protein denaturing agent; its mechanism for dismantling proteins is to disrupt the disulfide bonds found in the protein. When urea is introduced to a protein, the hydrogen bonds holding the protein together are disrupted. Heat can also be considered a denaturing agent, which has the potential to disrupt all intermolecular interactions in a protein.
Which of the following levels of structure in a protein would not be disrupted by the introduction of mercaptoethanol?