Card 0 of 19
Simplify:
Compare your answer with the correct one above
Which is greater?
(a)
(b)
If , then
and
, so by transitivity,
, and (b) is greater
Compare your answer with the correct one above
Which is greater?
(a)
(b)
A negative number to an odd power is negative, so the expression in (a) is negative. The expression in (b) is positive since the base is positive. (b) is greater.
Compare your answer with the correct one above
Expand:
Which is the greater quantity?
(a) The coefficient of
(b) The coefficient of
By the Binomial Theorem, if is expanded, the coefficient of
is
.
(a) Substitute : The coerfficient of
is
.
(b) Substitute : The coerfficient of
is
.
The two are equal.
Compare your answer with the correct one above
Expand:
Which is the greater quantity?
(a) The coefficient of
(b) The coefficient of
Using the Binomial Theorem, if is expanded, the
term is
.
This makes the coefficient of
.
We compare the values of this expression at for both
and
.
(a) If and
, the coefficient is
.
This is the coefficient of .
(b) If and
, the coefficient is
.
This is the coefficient of .
(b) is the greater quantity.
Compare your answer with the correct one above
Which is the greater quantity?
(a)
(b)
Simplify the expression in (a):
Since ,
,
making (a) greater.
Compare your answer with the correct one above
Consider the expression
Which is the greater quantity?
(a) The expression evaluated at
(b) The expression evaluated at
Use the properties of powers to simplify the expression:
(a) If , then
(b) If , then
(b) is greater.
Compare your answer with the correct one above
Which of the following expressions is equivalent to
?
Use the square of a binomial pattern as follows:
This expression is not equivalent to any of the choices.
Compare your answer with the correct one above
Express in terms of
.
, so
, so
Compare your answer with the correct one above
. Which is the greater quantity?
(a)
(b)
By the Power of a Power Principle,
Therefore,
It follows that
Compare your answer with the correct one above
is a real number such that
. Which is the greater quantity?
(a)
(b) 11
By the Power of a Power Principle,
Therefore, is a square root of 121, of which there are two - 11 and
. Since it is possible for a third (odd-numbered) power of a real number to be positive or negative, we cannot eliminate either possibility, so either
or
.
Therefore, we cannot determine whether is less than 11 or equal to 11.
Compare your answer with the correct one above
By the Power of a Product Principle,
Also, by the Power of a Power Principle
Therefore,
Compare your answer with the correct one above
is a negative number. Which is the greater quantity?
(a)
(b)
Any nonzero number raised to an even power, such as 4, is a positive number. Therefore,
is the product of a negative number and a positive number, and is therefore negative.
By the same reasoning, is a positive number.
It follows that .
Compare your answer with the correct one above
Evaluate .
By the Power of a Power Principle,
By way of the Power of a Quotient Principle,
.
Compare your answer with the correct one above
and
are both real numbers.
Evaluate .
, as the product of a sum and a difference, can be rewritten using the difference of squares pattern:
By the Power of a Power Principle,
Therefore, is a square root of
- that is, a square root of 121. 121 has two square roots,
and 121, but since
is real,
must be the positive choice, 11. Similarly,
is the positive square root of 81, which is 9.
The above expression can be evaluated as
.
Compare your answer with the correct one above
Which is the greater quantity?
(a)
(b)
The absolute value of is 4, so either
or
. Likewise,
or
. However, since
and
, it follows that regardless,
and
.
As the product of the sum and the difference of the same two expressions, can be rewritten as the difference of the squares of the expressions:
Using the Power of a Product Principle:
Substituting,
Similarly,
Therefore, .
Compare your answer with the correct one above
Which is the greater quantity?
(a)
(b) 16
Multiply the polynomials through distribution:
Collecting like terms, the above becomes
By the Power of a Power Principle,
This makes a square root (positive or negative) of
, or 81, so
or
We can not eliminate either since an odd power of a number can have any sign, and we are not given the sign of .
By similar reasoning, either
or
can assume one of four values, depending on which values of
and
are selected:
Regardless of the choice of and
,
.
Compare your answer with the correct one above
Which is the greater quantity?
(a)
(b) 37
Multiply the polynomials through distribution:
The absolute value of is 4, so either
or
. Likewise,
or
.
If and
, we see that
If and
, we see that
In the first scenario, ; in the second,
. This makes the information insufficient.
Compare your answer with the correct one above
Define .
is a function with the set of all real numbers as its domain.
Which is the greater quantity?
(a)
(b)
, so
.
By definition,
.
Since and
, we can determine that
.
However, this does not tell us the value of at
. Therefore, we do not know whether
or
, if either, is the greater.
Compare your answer with the correct one above