Card 0 of 6
Refer to the above figure. Which is the greater quantity?
(a)
(b)
If two chords intersect inside a circle, both chords are cut in a way such that the products of the lengths of the two chords formed in each are the same - in other words,
Divide both sides of this equation by , then cancelling:
The two quantities are equal.
Compare your answer with the correct one above
Refer to the above figure. Which is the greater quantity?
(a)
(b) 3
If two chords intersect inside a circle, both chords are cut in a way such that the products of the lengths of the two chords formed in each are the same - in other words,
or
Therefore, .
Compare your answer with the correct one above
Figure NOT drawn to scale.
Refer to the above figure. Which is the greater quantity?
(a)
(b) 7
If two chords intersect inside a circle, both chords are cut in a way such that the products of the lengths of the two chords formed in each are the same - in other words,
Solving for :
Since , it follows that
, or
.
Compare your answer with the correct one above
In the above figure, is a tangent to the circle.
Which is the greater quantity?
(a)
(b) 32
If a secant segment and a tangent segment are constructed to a circle from a point outside it, the square of the distance to the circle along the tangent is equal to the product of the distances to the two points on the circle along the secant; in other words,
Simplifying, then solving for :
To compare to 32, it suffices to compare their squares:
, so, applying the Power of a Product Principle, then substituting,
, so
;
it follows that
.
Compare your answer with the correct one above
Figure NOT drawn to scale
In the above figure, is a tangent to the circle.
Which is the greater quantity?
(a)
(b) 8
If a secant segment and a tangent segment are constructed to a circle from a point outside it, the square of the distance to the circle along the tangent is equal to the product of the distances to the two points on the circle intersected by the secant; in other words,
Simplifying and solving for :
Factoring out :
Either - which is impossible, since
must be positive, or
, in which case
.
Compare your answer with the correct one above
Figure NOT drawn to scale
In the above figure, is the center of the circle, and
is a tangent to the circle. Also, the circumference of the circle is
.
Which is the greater quantity?
(a)
(b) 25
is a radius of the circle from the center to the point of tangency of
, so
,
and is a right triangle. The length of leg
is known to be 24. The other leg
is a radius radius; we can find its length by dividing the circumference by
:
The length hypotenuse, , can be found by applying the Pythagorean Theorem:
.
Compare your answer with the correct one above