How to find the perimeter of a trapezoid - Intermediate Geometry

Card 0 of 5

Question

Find the perimeter of the following trapezoid.

Geo_area2

Answer

The answer is 50 ft. In order to find the perimeter, you must find the length of the left side. After some deduction , you can find that the base of the triangle is 6 ft. Then using the Pythagorean Theorem, or 3-4-5 right triangles, you can find that the height of the triangle and rectangle is 8 ft. Geo_area2b

Once you find that the last side is 8 ft, you can add

to get an answer of 50 ft. for the perimeter.

Compare your answer with the correct one above

Question

Trapezoid_measures

The height of a trapezoid is cm and the length of is cm.

Find the perimeter of the trapezoid to the nearest hundreth.

Answer

Use the triangle formed by the height of the trapezoid to find the lengths of the two sides of the trapezoid and the length of :

. cm.

This finds the base of the triangle, which can be added twice to to find : cm.

Now, use the same triangle to find the length of the sides.

. cm.

Lastly, add all of the lengths together: cm.

Compare your answer with the correct one above

Question

Find the perimeter of the trapezoid below.

14

Answer

14

We can then use the Pythagorean Theorem to find the right portion of the bottom base. We can then use this value to determine the left portion.

14

Using Pythagorean Theorem again, we can calculate the left leg to be 20. That means we now know all four sides. The perimeter is simply the sum.

Compare your answer with the correct one above

Question

An isosceles trapezoid has two bases that are parallel to each other. The larger base is times greater than the smaller base. The smaller base has a length of inches and the length of non-parallel sides of the trapezoid have a length of inches.

What is the perimeter of the trapezoid?

Answer

To find the perimeter of this trapezoid, first find the length of the larger base. Then, find the sum of all of the sides. It's important to note that since this is an isosceles trapezoid, both of the non-parallel sides will have the same length.

The solution is:

The smaller base is equal to inches. Thus, the larger base is equal to:

, where the length of one of the non-parallel sides of the isosceles trapezoid.

Compare your answer with the correct one above

Question

Dr. Robinson's property is shaped like an isosceles trapezoid. Dr. Robinson gave a contractor the following measurements, so that the contractor can build a wall around the enire property.

Measurements of property:

Find the perimeter of Dr. Robinson's property.

Answer

The measurements that Dr. Robinson gave to the contractor include the lengths of the two base sides and one of the non-parallel sides of the property. Since Dr. Robinson's property is shaped like an isosceles trapezoid, there must be two non-parallel sides of equal length.

The solution is:

Compare your answer with the correct one above

Tap the card to reveal the answer