Card 0 of 20
What is 25% of ?
Solve for in the equation
by isolating on the left side. Do this by reversing the operations in the reverse of the order of operations.
First, subtract 17 from both sides:
Now, divide both sides by 2:
One way to find 25% of this value is to multiply 41 by 25 and divide by 100:
,
the correct choice.
Compare your answer with the correct one above
What is the vertex of the following quadratic polynomial?
Given a quadratic function
the vertex will always be
.
Thus, since our function is
,
, and
.
We plug these variables into the formula to get the vertex as
.
Hence, the vertex of
is
.
Compare your answer with the correct one above
Which of the following expressions represents the discriminant of the following polynomial?
The discriminant of a quadratic polynomial
is given by
.
Thus, since our quadratic polynomial is
,
,
, and
.
Plugging these values into the discriminant equation, we find that the discriminant is
.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
This can be done by adding 17 to both sides:
The key to determining the nature of the solution set is to examine the discriminant
. Setting
, the value of the discriminant is
This value is negative. Consequently, the solution set comprises two imaginary numbers.
Compare your answer with the correct one above
Which of the following polynomial equations has exactly one solution?
A polynomial equation of the form
has one and only one (real) solution if and only if its discriminant is equal to zero - that is, if its coefficients satisfy the equation
In each of the choices, and
, so it suffices to determine the value of
which satisfies this equation. Substituting, we get
Solve for by first adding 400 to both sides:
Take the square root of both sides:
The choice that matches this value of is the equation
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
To accomplish this, first, multiply the binomials on the left using the FOIL technique:
Collect like terms:
Now, subtract 18 from both sides:
The key to determining the nature of the solution set is to examine the discriminant . Setting
, the value of the discriminant is
The discriminant is a positive number, so there are two real solutions. Since 73 is not a perfect square, the solutions are irrational.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
To accomplish this, first, multiply the binomials on the left using the FOIL technique:
Collect like terms:
Add 6 to both sides:
The key to determining the nature of the solution set is to examine the discriminant . Setting
, the value of the discriminant is
The discriminant is a positive number; furthermore, it is a perfect square, being equal to the square of 11. Therefore, the solution set comprises two rational solutions.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
.
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
This can be done by simply switching the first and second terms:
The key to determining the nature of the solution set is to examine the discriminant . Setting
, the value of the discriminant is
The discriminant has a negative value. It follows that the solution set comprises two imaginary values.
Compare your answer with the correct one above
Which of the following polynomial equations has exactly one solution?
A polynomial equation of the standard form
has one and only one (real) solution if and only if its discriminant is equal to zero - that is, if its coefficients satisfy the equation
Each of the choices can be rewritten in standard form by subtracting the term on the right from both sides. One of the choices can be rewritten as follows:
By similar reasoning, the other four choices can be written:
In each of the five standard forms, and
, so it is necessary to determine the value of
that produces a zero discriminant. Substituting accordingly:
Add 900 to both sides and take the square root:
Of the five standard forms,
fits this condition. This is the standard form of the equation
,
the correct choice.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
To accomplish this, first, multiply the binomials on the left using the FOIL technique:
Collect like terms:
Now, add 18 to both sides:
The key to determining the nature of the solution set is to examine the discriminant . Setting
, the value of the discriminant is
This discriminant is negative. Consequently, the solution set comprises two imaginary numbers.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
This can be done by switching the first and third terms on the left:
The key to determining the nature of the solution set is to examine the discriminant
. Setting
, the value of the discriminant is
.
The discriminant is a positive number but not a perfect square. Therefore, there are two irrational solutions.
Compare your answer with the correct one above
Give the nature of the solution set of the equation
To determine the nature of the solution set of a quadratic equation, it is necessary to first express it in standard form
This can be done by subtracting 34 from to both sides:
The key to determining the nature of the solution set is to examine the discriminant
. Setting
, the value of the discriminant is
.
The discriminant is a positive number but not a perfect square. Therefore, there are two irrational solutions.
Compare your answer with the correct one above
Solve the following equation:
The first step to solving an equation where is in a radical is to isolate the radical. To do this, we need to subtract the 5 from both sides.
Now that the radical is isolated, clear the radical by raising both sides to the power of 3. Note:
Now we want to isolate the term. First, subtract the 5 from both sides.
Finally, divide both sides by to solve for
.
Compare your answer with the correct one above
Solve for :
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
Multiply both sides by :
Subtract from both sides:
Multiply both sides by , distributing on the right:
,
the correct response.
Compare your answer with the correct one above
Solve for :
Assume is positive.
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
Subtract from both sides:
Divide both sides by 9:
Take the square root of both sides:
Simplify the expression on the right by splitting it, and taking the square root of numerator and denominator:
,
the correct response.
Compare your answer with the correct one above
Solve for :
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
Subtract 20 from both sides:
Divide both sides by :
,
the correct response.
Compare your answer with the correct one above
Solve for :
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
First, square both sides to eliminate the radical symbol:
Rewrite the expression on the right using the square of a binomial pattern:
Subtract 1 from both sides:
,
the correct response.
Compare your answer with the correct one above
Solve for :
You my assume is positive.
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
First, add to both sides:
Take the positive square root of both sides:
,
the correct response.
Compare your answer with the correct one above
Solve for :
To solve for in a literal equation, use the properties of algebra to isolate
on one side, just as if you were solving a regular equation.
First, take the reciprocal of both sides:
Multiply both sides by :
Distribute on the right:
Subtract 1 from both sides, rewriting 1 as to facilitate subtraction:
,
the correct response.
Compare your answer with the correct one above
Solve.
In order to solve for the variable, , we need to isolate it on the left side of the equation. We will do this by reversing the operations done to the variable by performing the opposite of each operation on both sides of the equation.
Let's begin by rewriting the given equation.
Subtract from both sides of the equation.
Simplify.
Multiply both sides of the equation by .
Solve.
Compare your answer with the correct one above