Understanding Circular Motion - High School Physics

Card 0 of 15

Question

Ellen is swinging a yo-yo in a circular path perpendicular to the ground. The yo-yo moves in a clockwise direction with a constant speed of .

What is the velocity of the yo-yo at the bottom of the circle?

Answer

Remember, when working with circular motion, the velocity is ALWAYS tangential to the circle. This means that, even though the speed is constant, the direction is always tangent to the edge of the circle. If the circle below represents the path of the yo-yo, and it moves in a clockwise direction, then the velocity at the bottom of the path will be to the left.

Screen_shot_2013-12-16_at_12.54.09_pm

The magnitude of the velocity is constant, so the final answer will be .

Compare your answer with the correct one above

Question

Two children sit on a merry-go-round. One sits from the center, and the other sits from the center. If the children are in a straight line from the center, which child has a greater speed?

Answer

Velocity is given by distance per unit time.

When moving in a circle, the distance is the circumference, and each rotation takes exactly one period. We can substitute into the velocity formula.

If the children are in a straight line, that means that their periods (how long it takes to make one revolution) will be the same. The only thing that changes is , the distance from the center. Since radius is in the numerator, we can conclude that increasing the distance from the center will increase the velocity.

Compare your answer with the correct one above

Question

Which of the following will increase the torque on a wrench, without changing the force applied?

Answer

The formula for torque is:

If the force applied remains the same, then that means that the torque and the lever arm are directly proportional: when one increases the other increases as well. The length of the lever arm, in this problem, is the length of the wrench; thus, increasing the length of the wrench will increase the amount of torque generated, without requiring a change in the force applied.

Compare your answer with the correct one above

Question

A car driving on the highway is moving at 60 miles per hour. As the car nears an exit ramp, the car slows to 35 miles per hour, a speed that is maintained throughout the circular path of the exit ramp. What force is keeping the car on its path (i.e. in circular motion)?

Answer

The correct answer is centripetal force. In a free body diagram, this is the force that would be directed towards the center of the circular path; in circular motion, acceleration and net force are always in this direction.

Normal force and weight act perpendicular to the line that is directed towards the center of the circle, and will not prevent the car from traveling off the circular path. Momentum is not a measure of force and is not particularly relevant to this question.

Compare your answer with the correct one above

Question

A ball attached to a string is moving counterclockwise in a vertical circle. If the string is cut exactly at the point where the ball is at the top of its motion (the top of the circle), what direction will the ball move in initially?

Answer

In circular motion, velocity is tangential to the circular path. Since the object is moving counterclockwise, at the top of the circle this tangent line points to the left. It may help to draw a diagram to better visualize this motion.

Compare your answer with the correct one above

Question

A penny is placed 12.0cm from the axis of a rotating turntable of variable speed. When the speed of the turntable is slowly increased, the penny remains fixed on the turntable until a rate of 40 revolutions per minute is reached, at which point the penny slides off. Calculate the coefficient of static friction between the penny and the turntable.

Answer

Known

which should be converted to meters ()

which should be converted to

We are dealing with circular motion so the first thing to do is to identify the force that is causing the centripetal motion. In this case it is the force of friction which is holding the penny in place. Therefore we know that the centripetal force is equal to the force of friction.

The centripetal force is equal to the mass times the centripetal acceleration.

To calculate the centripetal acceleration you will need to know the velocity of the penny and the radius that the penny sits at.

Therefore

We also know that the frictional force is related to the coefficient of friction and the normal force.

In this case the penny is sitting on the surface and the gravitational force is equal in size to the normal force. Therefore

The force of gravity is equal to the mass times the gravitational acceleration.

We can put all this together to a larger equation that says that

Notice that mass falls out of both sides of the equation

We can now rearrange and solve for the coefficient of friction

Now we can plug in our known values

Compare your answer with the correct one above

Question

In a rotating carnival ride, people rotate in a vertical cylindrical walled room. During the ride, the floor drops out. If the room radius is , and the rotation frequency is when the floor drops out, what minimum coefficient of static friction keeps the people from slipping down?

Answer

Knowns

revolutions per second which needs to be converted to

We are dealing with circular motion so the first thing to do is to identify the force that is causing the centripetal motion. In this case it is the normal force of the wall that is turning the person toward the center. The force of gravity is pulling the person down and the friction force is what is counteracting the force of gravity keeping the person from falling down.

The centripetal force is equal to the mass times the centripetal acceleration.

To calculate the centripetal acceleration you will need to know the velocity of the person and the radius that the person is at.

Therefore

We will now need to use the frictional force to get a relationship that will help us solve for the normal force.

Since the force of gravity is equal to the frictional force

The force of gravity is equal to the object’s mass times the acceleration due to gravity

We can rearrange this equation for normal force by itself

We can now put this all together

Notice that mass falls out of both sides of the equation

We can now solve for the coefficient of friction

We can now plug in our known variables.

Compare your answer with the correct one above

Question

A car rounds a curve of radius banked at an angle of . If the car is traveling at , will friction force be required? If so, in what direction?

Answer

Knowns

(need to convert to )

The first thing to do is determine the magnitude of the centripetal force acting on the car.

Next we need to determine if the component of the normal force that contributes to the centripetal acceleration is equal to, greater than or less than this value.

This number is less than the magnitude of the centripetal force acting on the car meaning that there is friction involved pointing down the slope to help keep the car moving around the circle.

Compare your answer with the correct one above

Question

Computational

A ball rolls around the edge of a circle with a radius of . If it is rolling at a speed of , what is the centripetal acceleration?

Answer

Centripetal acceleration is the acceleration towards the center when an object is moving in a circle. Though the speed may be constant, the change in direction results in a non-zero acceleration.

The formula for this is , where is the perceived tangential velocity and is the radius of the circle.

Plug in the given values and solve for the acceleration.

Compare your answer with the correct one above

Question

A ball rolls around the edge of a circle with a radius of . If it is rolling at a speed of , what is the centripetal force?

Answer

Centripetal force is the force that constantly moves the object towards the center; it is what keeps the object moving in a circle rather than flying off tangentially to the circle.

The formula for force is

To find the centripetal force, we need to find the centripetal acceleration. We do this with the formula , where v is the perceived tangential velocity and r is the radius of the circle.

Plug in the given values and solve for the acceleration.

Plug the acceleration and given mass into the first equation to solve for force.

Compare your answer with the correct one above

Question

At what minimum speed must a roller coaster be traveling so that the passengers upside down at the top of the circle do not fall out? The radius of curvature of the roller coaster is .

Answer

At the top of the roller coaster the minimum force that is applied is the gravitational force pulling the passengers down. Therefore the centripetal force at the top of the coaster is caused by the force of gravity.

We know that the centripetal force is equal to the centripetal acceleration times the mass.

To calculate the centripetal acceleration you will need to know the velocity of the roller coaster and the radius that the coaster is at.

Therefore

We also know that the force of gravity is equal to mass times the acceleration due to gravity.

Putting this together we get

Notice that mass falls out of both sides of the equation

We can now solve for the velocity by itself

Plug in our values

Compare your answer with the correct one above

Question

Conceptual

Two children sit on a merry-go-round. One sits from the center, and the other sits from the center. If the children are in a straight line form the center, which child has a greater speed?

Answer

Velocity is given by distance per unit time.

When moving in a circle, the distance is the circumference, and each rotation takes exactly one period. We can substitute into the velocity formula.

If the children are in a straight line, that means that their periods (how long it takes to make one revolution) will be the same. The only thing that changes is r, the distance from the center. Since radius is in the numerator, we can conclude that increasing the distance from the center will increase the velocity.

Compare your answer with the correct one above

Question

A car driving on the highway is moving at 60 miles per hour. As the car nears an exit ramp, the car slows to 35 miles per hour, a speed that is maintained throughout the circular path of the exit ramp. What force is keeping the car on its path (i.e. in circular motion)?

Answer

The correct answer is centripetal force. In a free body diagram, this is the force that would be directed towards the center of the circular path; in circular motion, acceleration and net force are always in this direction.

Normal force and weight act perpendicular to the line that is directed towards the center of the circle, and will not prevent the car from traveling off the circular path. Momentum is not a measure of force and is not particularly relevant to this question.

Compare your answer with the correct one above

Question

A ball attached to a string is moving counterclockwise in a vertical circle. If the string is cut exactly at the point where the ball is at the top of its motion (the top of the circle), what direction will the ball move in initially?

Answer

In circular motion, velocity is tangential to the circular path. Since the object is moving counterclockwise, at the top of the circle this tangent line points to the left. It may help to draw a diagram to better visualize this motion.

Compare your answer with the correct one above

Question

A rider on a Ferris wheel moves in a vertical circle of radius r at constant speed v. Is the normal force that the seat exerts on the rider at the top of the wheel?

Answer

The centripetal force is what is acting on the rider. At the top of the Ferris wheel, the normal force is pointing up, and the gravitational force is pointing down. The sum of these two forces must equal the centripetal force pointing downward toward the center of the circle. Therefore the normal force must be smaller than the gravitational force. At the bottom of the Ferris wheel, the same forces are present. However, the sum of these forces must equal the centripetal force point upward toward the center of the circle. Therefore the normal force must be greater than the gravitational force. Since the normal force must be greater than the gravitational force at the bottom and less than the gravitational force at the top, the force at the bottom must be greater than the force on the top.

Compare your answer with the correct one above

Tap the card to reveal the answer