Graphing Circle Functions - High School Math

Card 0 of 2

Question

Find the -intercepts for the circle given by the equation:

Answer

To find the -intercepts (where the graph crosses the -axis), we must set . This gives us the equation:

Because the left side of the equation is squared, it will always give us a positive answer. Thus if we want to take the root of both sides, we must account for this by setting up two scenarios, one where the value inside of the parentheses is positive and one where it is negative. This gives us the equations:

and

We can then solve these two equations to obtain .

Compare your answer with the correct one above

Question

Find the -intercepts for the circle given by the equation:

Answer

To find the -intercepts (where the graph crosses the -axis), we must set . This gives us the equation:

Because the left side of the equation is squared, it will always give us a positive answer. Thus if we want to take the root of both sides, we must account for this by setting up two scenarios, one where the value inside of the parentheses is positive and one where it is negative. This gives us the equations:

and

We can then solve these two equations to obtain

Compare your answer with the correct one above

Tap the card to reveal the answer