Cellular Metabolism - GRE Subject Test: Biochemistry, Cell, and Molecular Biology

Card 0 of 20

Question

Which of the following mnemonics is helpful in remembering the relationship between anabolism and catabolism?

Answer

ABCD correlates to anabolism=build catabolism=destroy. Anabolism is the constructive phase of metabolism during which tissues are built. Catabolism is the opposite of anabolism, representing the destructive phase of metabolism. Metabolism is the total of all the chemical changes that take place in the body.

STEVE is the pathway of sperm through the male reproductive system: Seminiferous Tubules, Epididymis, Vas Deferens, Ejaculatory duct. PAD is the layers of the meninges: Piamater, Arachnoid mater, Dura mater. RICE refers to the treatment for an injury to a joint: Rest, Ice, Compression, Elevation. AWSOME is the signs and symptoms of depression: Affect flat, Weight change, Energy loss, Sad feelings, Others (guilt, loss of pleasure, hopelessness), Memory loss, Emotional blunting.

Compare your answer with the correct one above

Question

__________ is an enzyme used to help break down glycogen. The end product is __________.

Answer

Phosphorylases are enzymes that attach phosphate groups to acceptors by breaking a chemical bond. Phosphatases are enzymes that remove phosphate groups.

Glycogen catabolism occurs by activation of glycogen phosphorylase, which then catalyzes the reaction of glycogen into glucose-1-phosphate (and a glycogen chain that is one glucose shorter).

Compare your answer with the correct one above

Question

__________ helps transfer fatty acids into the mitochondrial matrix.

Answer

Carnitine is ultimately responsible for helping fatty acids enter into the mitochondrial matrix. Acyl-CoA is actually the activated fatty acid that is being transferred. Carnitine reacts with acyl-CoA, and the newly formed acyl carnitine is moved into the mitochondrial matrix by a translocase.

Biotin is a vitamin that has many functions, including aiding in fatty acid synthesis. There is no protein that is actually called fatty acid transferase.

Compare your answer with the correct one above

Question

Which of the following statements about catabolic pathways are not true?

Answer

Macromolecules, such as peptides, polysaccharides, lipids, and proteins can be broken down to provide energy as well as operate in reverse through anabolic pathways. Anabolic and catabolic processes can occur simultaneously. All of the other answers are true.

Compare your answer with the correct one above

Question

Which of the following cellular processes is defined as a catabolic reaction?

Answer

A catabolic reaction is defined as a reaction in which a large molecule is broken down into smaller subunits. Of the following options, all listed are anabolic except for glycolysis. Glycolysis is the process of converting a glucose molecule into 2 pyruvate molecules, which classifies it as catabolic in nature.

Compare your answer with the correct one above

Question

During the first step of glycolysis, glucose is phosphorylated by hexokinase. What is the purpose of this reaction?

Answer

If glucose was not phosphorylated, it would be free to diffuse through the plasma membrane and leave the cell. This situation would not be good for the cell because the reaction cannot continue outside of the cytosol. The negative charge created by the phosphorylation prevents the glucose molecule from crossing the plasma membrane due to the similar charge at the plasma membrane.

Compare your answer with the correct one above

Question

The carbohydrate mannose is not present in the standard glycolytic pathway. It can, however, enter glycolysis by first being converted into another sugar. Which of the following choices represents the point at which mannose first enters the glycolytic pathway?

Answer

Mannose enters glycolysis by first being phosphorylated by hexokinase. The newly formed mannose-6-phosphate is then isomerized into fructose-6-phosphate by the enzyme phosphomannose isomerase. The sugar is now in a form that can follow the normal glycolytic pathway.

Compare your answer with the correct one above

Question

What does it mean to say that glycolysis has an energy investment phase?

Answer

Glycolysis can be divided into two parts: the energy investment phase and the energy payoff phase. The energy investment phase comes first when glucose is phosphorylated twice, requiring the use of two molecules of ATP. After the glucose is split, four molecules of ATP will be made in the final steps. This results in a net gain of two ATP in glycolysis, but ATP must be spent prior to being made.

Compare your answer with the correct one above

Question

What molecule is the critical product of fermentation that is reinvested in glycolysis?

Answer

During glycolysis, a total of two molecules of NAD+ are reduced in order to form two NADH molecules. These NAD+ molecules need to be regenerated in order for more glycolytic reactions to take place; otherwise, the process would come to a halt. Fermentation takes care of this problem in anaerobic environments by oxidizing excess NADH (since it is no longer utilized in the electron transport chain) into NAD+, which is then returned to the cytosol where it can be used again in glycolysis.

Compare your answer with the correct one above

Question

Glycolysis converts molecules of glucose into pyruvate. Glycolysis consists of two phases: the preparatory phase (which consumes ATP) and the pay-off phase (which produces ATP). Which of these correctly indicates the number of ATPs consumedin the preparatory phase, and the number of ATPs generatedin the pay-off phase of anaerobic glycolysis.

Answer

The initial energy investment required for conversion of one glucose to pyruvate is 2 ATP in the preparatory phase. In the pay-off phase, substrate level phosphorylation produces a total of 4 ATP per initial glucose.

Compare your answer with the correct one above

Question

In what cellular compartment does the process of glycolysis occur?

Answer

Both phases of glycolysis occur in the cytosol of the cell. The products of glycolysis are moved for further processing into the mitochondria, but the conversion of glucose to pyruvate is a cytosolic reaction.

Compare your answer with the correct one above

Question

Pyruvate must be oxidized into acetyl-CoA in order to enter the citric acid cycle. Which of the following answers contains the inputs required for this process per one molecule of pyruvate?

Answer

and are the resultant molecules from this conversion, not the inputs. and are important molecules in the citric acid cycle, but are not required for this particular oxidation step. must be reduced to , and coenzyme A is a crucial modulator of these reactions. Thus, and coenzyme A are the required inputs for the oxidation of pyruvate to acetyl CoA.

Compare your answer with the correct one above

Question

A student isolates starch and provides it as nutrients to a cell culture in anaerobic conditions. What additional steps, if any, does the student have to take to facilitate energy production in the cells?

Answer

Starch is a complex carbohydrate that is digested by enzymes in the small intestine. These digestive enzymes, called glucosidases, are released by exocrine glands in humans and are involved in breakdown of complex carbohydrates to their individual monomers (glucose). Recall that energy production in cell begins with glycolysis, where a molecule of glucose is metabolized to produce intermediates for subsequent metabolic steps. Cells can’t use starch or glycogen during glycolysis; therefore, the student must add glucosidase to break down starch into individual glucose molecules.

Energy can be produced in anaerobic conditions (like in glycolysis). It might not have a high yield of energy such as aerobic respiration, but the cells can still produce energy when they are oxygen deficient. As mentioned, glycogen is a complex carbohydrate; therefore, adding it without glucosidase will not help facilitate energy production.

Compare your answer with the correct one above

Question

Anaerobic metabolism occurs in the __________; fermentation occurs in the __________.

Answer

Anaerobic metabolism, such as glycolysis and fermentation, occur in the cellular cytoplasm. The products of glycolysis are transported to the mitochondria where they undergo Krebs cycle (in mitochondrial matrix) and oxidative phosphorylation (on the inner mitochondrial membrane). Both Krebs cycle and oxidative phosphorylation require oxygen and are, therefore, called aerobic metabolism.

Compare your answer with the correct one above

Question

Which of the following is true regarding glycolysis?

Answer

Glycolysis is an anaerobic process that produces 2 net ATP, 2 pyruvate molecules, and 2 NADH. Pyruvate is a three-carbon molecule. Recall that glucose is a six-carbon molecule; therefore, the six-carbon glucose is broken down to two three-carbon pyruvate molecules. This means that all the carbons in glucose are transferred to the pyruvate molecules. ATP is produced and consumed in glycolysis. There is a total of four ATP molecules synthesized in the glycolysis; however, glycolysis consume two ATP molecules so you get a net of 2 ATP molecules. Finally, glycolysis involves the reduction two molecules to yield two NADH molecules (not FAD).

Compare your answer with the correct one above

Question

How many molecules of pyruvate are produced from one molecule of glucose during glycolysis?

Answer

The starting molecule in glycolysis is glucose, a six-carbon molecule while the ending molecule in glycolysis is pyruvate, a three-carbon molecule. During glycolysis glucose is split and its six carbons are used to make 2 molecules of three-carbon pyruvate because. Note that no carbon dioxide is released during glycolysis, but since aerobic metabolism (starting with the Krebs cycle) uses acetyl-CoA as a substrate, which is two carbons long, one molecule of carbon dioxide is released for each molecule of pyruvate produced during glycolysis.

Compare your answer with the correct one above

Question

The first step of glycolysis hydrolyzes ATP to ADP and inorganic phosphate. What happens to the glucose molecule during this step?

Answer

The first step of glycolysis consumes a molecule of ATP, removing one of the phosphate groups to make ADP. This phosphate group is added to glucose to make Glucose-6-phosphate, therefore glucose is phosphorylated.

Compare your answer with the correct one above

Question

Which of the following is true regarding glycolysis?

Answer

Glycolysis is the first step in producing ATP. Glycolysis is an anaerobic process that occurs in every cell. Certain cells, such as red blood cells, only rely on glycolysis for energy. In most of the other cells, glycolysis produces ATP and few intermediates that will be used in subsequent steps to generate more ATP; therefore, glycolysis occurs in every cell.

The major input for glycolysis is glucose. Glycogen, a storage form of glucose, needs to be broken down into individual glucose units before undergoing glycolysis. The net products of glycolysis are 2 NADH, 2 pyruvate molecules, and 2 ATP. There is a total of 4 ATP produced in glycolysis; however, two of the ATP molecules are consumed, leaving behind only 2 net ATP.

Compare your answer with the correct one above

Question

Lactate dehydrogenase inhibitor is added to a mixture of cells. Which of the following molecules will build up inside a cell undergoing aerobic respiration?

Answer

The question states that the cell undergoes aerobic respiration. This means that the products from anaerobic respiration (glycolysis) will go through Krebs cycle and electron transport chain (aerobic respiration) to generate ATP. Lactate dehydrogenase is an enzyme important for converting the pyruvate molecules (from glycolysis) to lactate and oxidizing NADH. This reaction occurs in anaerobic fermentation when there is tissue hypoxia (decrease in oxygen).

If this inhibitor was placed in a cell that is deprived of oxygen, then there would be a buildup of pyruvate and NADH; however, since the inhibitor is added to cells undergoing aerobic respiration there will be no buildup. The pyruvate and NADH will undergo aerobic respiration and generate ATP. Note that red blood cells (RBCs) are unique in that they only use anaerobic respiration for ATP; therefore, adding lactate dehydrogenase inhibitor to RBCs will lead to a buildup of pyruvate and NADH.

Compare your answer with the correct one above

Question

Alcoholics often present with a deficiency in vitamin B1 (thiamine). What can you conclude about an alcoholic with thiamine deficiency?

I. He/she will not produce any pyruvate and NADH

II. There will be a buildup of lactic acid

III. He/she will not produce any acetyl-CoA from the breakdown of carbohydrates

Answer

Thiamine is an important vitamin required for the conversion of pyruvate to acetyl-CoA. It is an important cofactor for the pyruvate dehydrogenase, an enzyme important for the conversion of pyruvate to acetyl-CoA. Pyruvate and NADH from glycolysis will continue to be produced; however, they cannot go any further without thiamine. This means that cells can’t undergo Krebs cycle and oxidative phosphorylation to produce ATP.

The buildup of pyruvate and NADH will cause the pyruvate molecules to undergo fermentation and produce lactic acid. It also will oxidize NADH, the product of which is essential for several cellular processes and needs to be regenerated.

Compare your answer with the correct one above

Tap the card to reveal the answer