How to use FOIL - GRE Quantitative Reasoning

Card 0 of 10

Question

Expand the following equation:

Answer

use FOIL to factor the expression.

First: (x3)(x) = x4

Outside (x3)(7) = 7x3

Inside (–3)(x) = –3x (Don't forget the negatives!)

Last (3)(7) = –21

Compare your answer with the correct one above

Question

Quantity A:

Quantity B:

Answer

The difference of squares formula says (x + a)(x - a) = x2 - a2.

Thus, Quantity A equals 8.

Therefore, Quantity B is greater.

Compare your answer with the correct one above

Question

What is the value of t if: 3x2 + tx - 21 = (3x - 3)(x + 7)?

Answer

Use the foil method: (3x - 3) (x + 7) = 3x2 +21x - 3x - 21 = 3x2 +18x -21 so t = 18.

Compare your answer with the correct one above

Question

Quantitative Comparison

Quantity A:

Quantity B:

Answer

Quantity A: 22 + 32 = 4 + 9 = 13

Quantity B: (2 + 3)2 = 52 = 25, so Quantity B is greater.

We can also think of this in more general terms. _x_2 + _y_2 does not generally equal (x + y)2.

Compare your answer with the correct one above

Question

Expand the function:

Answer

Use the method of FOIL (First, Outside, Inside, Last) and add exponents for like bases:

Compare your answer with the correct one above

Question

Quantity A:

Quantity B:

Answer

To approach this problem, consider the two quantities

Quantity A:

Quantity B:

They are in different forms, so expand quantity A:

Quantity A:

Quantity B:

Now, for the purpose of comparison, subtract shared terms from each quantity:

Quantity A*:

Quantity B*:

Both and are negative, non-zero values. Since is a product of two negative values, it must be positive. Quantity B must be greater than Quantity A.

Compare your answer with the correct one above

Question

Quantity A:

Quantity B:

Answer

Begin by expanding Quantity A:

Now in order to compare this to Quantity B:

A good method would be to subtract shared terms from each Quantity; in this case, both quantities have an and term. Removing them gives:

Quantity A' :

Quantity B' :

The question now is the sign of Quantity A'; if it's always positive, Quantity A is greater. If it's always negative, Quantity B is greater. If it is zero, the two are the same.

We only know that

If , then Quantity A' would be zero.

If , then Quantity A' would be positive.

Since values of x and y can be chosen to vary the relationship, th relationship cannot be determined.

Compare your answer with the correct one above

Question

Quantity A:

Quantity B:

Answer

Begin by expanding Quantity A:

Now in order to compare this to Quantity B:

A good method would be to subtract shared terms from each Quantity; in this case, both quantities have an and term. Removing them gives:

Quantity A' :

Quantity B' :

The question now is the sign of Quantity A'; if it's always positive, Quantity A is greater. If it's always negative, Quantity B is greater. If it is zero, the two are the same.

We know that

Now compare and :

Looking at absolute values so that we're only considering positive terms:

From this it follows that by multiplying across the inequality :

From this we can determine that the magnitude of is greater. However, since this is the product of one negative number and two positive numbers, is negative, and the sum of and must in turn be negative, and so Quantity A' must be negative!

From this we can say that Quantity B is greater.

Compare your answer with the correct one above

Question

Quantity A:

Quantity B:

Answer

This problem is deceptive. Looking at Quantity A, one may think to factor and reduce it as follows:

Which is identical to Quantity B.

However, we cannot ignore that in the original fraction! We are given no conditions as to the value of . If , then Quantity A would be undefined. Since we're not given the condition , we cannot ignore this possibility.

The relationship cannot be established.

Compare your answer with the correct one above

Question

Solve the following expression, .

Answer

You must FOIL the expression which means to multiply the first terms together followed by the outer terms, then the inner terms and lastly, the last terms.

The expression written out looks like

.

You multiple both First terms to get .

Then the outer terms are multiplied .

Then you multiple the inner terms together .

Finally you multiply the last terms of each .

This gives you or .

Compare your answer with the correct one above

Tap the card to reveal the answer