Card 0 of 13
A parallelogram has a base of and a height of
. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
The solution is:
Compare your answer with the correct one above
A parallelogram has a base of and a height measurement that is
the base length. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Before applying the formula you must find of
.
The final solution is:
Compare your answer with the correct one above
Using the parallelogram shown above, find the area.
This problem provides both the base and height measurements, thus apply the formula:
To find an equivalent answer in inches, you must convert the measurements to inches FIRST, and then multiply:
Therefore, our area in square inches is:
Compare your answer with the correct one above
A parallelogram has a base of and a height of
. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
The solution is:
Compare your answer with the correct one above
A parallelogram has a base of and a height measurement that is
the base length. Find the area of the parallelogram.
A parallelogram must have two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Before applying the formula you must find of
.
The solution is:
Compare your answer with the correct one above
Using the parallelogram shown above, find the area.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
The solution is:
Compare your answer with the correct one above
A parallelogram has a base of meters and a height measurement that is
the base length. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Before applying the formula you must find of
.
The solution is:
Compare your answer with the correct one above
A parallelogram has a base of and a height of
. Find the area of the parallelogram.
A parallelogram must have two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
The solution is:
Note: prior to applying the formula, the answer choices require you to be able to convert to
, as well as
to
. Or, you could have converted the mixed numbers to improper fractions and then multiplied the two terms:
Compare your answer with the correct one above
Find the area of the parallelogram shown above, excluding the interior space occupied by the blue rectangle.
A parallelogram must have two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Additionally, this problem requires you to find the area of the interior rectangle. This can be simply found by applying the formula:
Thus, the solution is:
Compare your answer with the correct one above
A parallelogram has a base of and a height measurement that is
the base length. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Before applying the formula you must find of
.
The solution is:
Note: when working with multiples of ten remove zeros and then tack back onto the product.
There were two total zeros in the factors, so tack on two zeros to the product:
Compare your answer with the correct one above
Find the area for the parallelogram shown above.
A parallelogram must have two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
The solution is:
Compare your answer with the correct one above
A parallelogram has a base of and a height measurement that is
the base length. Find the area of the parallelogram.
By definition a parallelogram has two sets of opposite sides that are congruent/parallel. However, to find the area of a paralleogram, you need to know the base and height lengths. Since this problem provides both the base and height measurements, apply the formula:
Before applying the formula you must find of
.
The solution is:
Note: when working with multiples of ten remove zeros and then tack back onto the product.
There were two total zeros in the factors, so tack on two zeros to the product:
Compare your answer with the correct one above
ABCD is a rectangle.
Quantity A: The area of AEB
Quantity B: The area BEC
The area of a triangle is
Consider the rectangle ABCD
As a rectangle:
With appearing directly in the center of the rectangle.
The area of
Notice that the term corresponds to the triangle's height.
The area of
The two quantities are equal.
Compare your answer with the correct one above