GMAT Quantitative Reasoning › Solving by Factoring
If and
are positive, what is the value of
?
(1)
(2)
Willy's teacher challenged him to write two whole numbers in the square and circle in the diagram below in order to make a polynomial that could be factored.
Did Willy succeed?
Statement 1: The number Willy wrote in the square is a multple of 4.
Statement 2: The number Willy wrote in the circle is a multiple of 9.
Chad's teacher challenged him to write two whole numbers in the square and circle in the diagram below in order to make a polynomial that could be factored.
Did Chad succeed?
Statement 1: The cube root of the number Chad wrote in the square is a whole number.
Statement 2: The cube root of the number Chad wrote in the circle is an irrational number.
Julia's teacher challenged her to write two whole numbers in the square and circle in the diagram below in order to make a polynomial that could be factored.
Did Julia succeed?
Statement 1: The cube root of the number Julia wrote in the circle is a whole number.
Statement 2: The number Julia wrote in the square is ten times the number Julia wrote in the circle.
Theresa's teacher challenged her to write whole numbers in the circle and the square in the diagram below in order to make a polynomial that could be factored.
Assuming Theresa wrote two whole numbers, did she succeed?
Statement 1: Theresa wrote a 64 in the circle.
Statement 2: Theresa wrote a multiple of 6 in the square.
Karen's teacher challenged her to write two whole numbers in the square and circle in the diagram below in order to make a polynomial that could be factored.
Assuming both numbers are whole numbers, did Karen succeed?
Statement 1: The cube root of the number Julia wrote in the circle is a whole number.
Statement 2: The number Julia wrote in the square is twenty-seven times the number Julia wrote in the circle.
Simplify:
Don's teacher challenged him to write two whole numbers in the square and circle in the diagram below in order to make a polynomial that could be factored.
Assuming that Don wrote two whole numbers, did he succeed?
Statement 1: The number Don wrote in the circle is the square of half the number he wrote in the square.
Statement 2: The sum of the numbers Don wrote in the square and in the circle is 15.
Consider function .
I) has zeroes at
and
.
II) is a second degree polynomial.
Find the equation that models .