Conditional Probability

Practice Questions

Finite Mathematics › Conditional Probability

Questions
8
1

Jack and Jill agree to a game, the rules of which are as follows:

A card will be drawn from a standard 53-card deck (including the joker). If a club is drawn, Jack will pay Jill $100. If a card of any other suit is drawn, Jill will pay Jack $20.

For the game to be fair, what must happen in the event the joker is drawn?

(Note: The joker is not considered to be of any of the four suits.)

2

A card is drawn at random from a standard deck of 52 cards (the joker is not included), and its rank and suit are recorded.

Which of the following changes both the probability of drawing a black card and that of drawing an ace?

  1. Replacing the ace of spades with the joker

  2. Adding the joker

  3. Removing the ace of spades

3

Jack and Jill agree to a game. A card is drawn at random from a standard deck of 52. If the card is a spade, Jack plays Jill $75. If the card is anything else, Jill pays Jack $25.

True or false: This is an example of a fair game.

4

The odds in favor of an event occurring are 17 to 4. To the nearest hundredth, what is the probability of the event happening?

5

Jack and Jill agree to a game. A card is drawn at random from a standard deck of 52 (no joker). If the card is a face card (king, jack, queen) or a ten, Jack plays Jill $50. If the card is anything else, Jill pays Jack $25.

Which of the following is true of the game?

6

From a standard deck of 52 cards (the joker is not included) a card is drawn. The person who draws it reveals only that the card is black.

A second card is drawn without replacement. What is the probability that the card will be a spade?

7

The twelve face cards (kings, queens, jacks) are separated from a standard deck of 52 cards. Two cards are selected at random from the twelve, without replacement. What is the probability that both cards will be kings?

8

The probability of an event is . What are the odds in favor of the event?

Return to subject