Prove Slope Criteria for Parallel and Perpendicular Lines: CCSS.Math.Content.HSG-GPE.B.5 - Common Core: High School - Geometry

Card 0 of 12

Question

In slope intercept form, find the equation of the line parallel to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is parallel, our slope () is going to be the same as the original equation.

So

Then we substitute -7 for and 10 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line parallel to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is parallel, our slope () is going to be the same as the original equation.

So

Then we substitute 7 for and 5 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute -10 for and 10 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute 1 for and -2 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line parallel to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is parallel, our slope () is going to be the same as the original equation.

So

Then we substitute -4 for and -6 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute -1 for and -9 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute 2 for and -5 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute 7 for and -5 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line parallel to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is parallel, our slope () is going to be the same as the original equation.

So

Then we substitute -5 for and 6 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute -5 for and -4 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line perpendicular to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is perpendicular, our slope () is going to be the negative reciprocal of the original equation.

So

Then we substitute -5 for and 5 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Question

In slope intercept form, find the equation of the line parallel to and goes through the point .

Answer

First step is to recall slope intercept form.

Where is the slope, and is a point on the line.

Since we want a line that is parallel, our slope () is going to be the same as the original equation.

So

Then we substitute 7 for and 8 for

After plugging them in, we get.

Now we solve for

Compare your answer with the correct one above

Tap the card to reveal the answer