Card 0 of 12
From the following picture, determine x and y.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Compare your answer with the correct one above
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Compare your answer with the correct one above
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Compare your answer with the correct one above
From the following picture, determine and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for and
.
Now let's solve for and
.
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine \uptext{x}, and \uptext{y}.
Explanation
INSERT PICTURE HERE
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal 360^{\circ}.
The last thing we know, the most important one is all opposite angles must equal 180^{\circ}.
Now we need to set up equations to solve for \uptext{x}, and \uptext{y}.
180 = y + 117.0
180 = x + 63.0
Now let's solve for \uptext{x}, and \uptext{y}.
y = 63.0
x = 117.0
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above
From the following picture, determine , and
.
Since this polygon is inscribed within a circle, we know a few things.
The first thing we know is that the sum of all the interior angles must equal .
The last thing we know, the most important one is all opposite angles must equal .
Now we need to set up equations to solve for , and
.
Now let's solve for , and
.
Compare your answer with the correct one above