Card 0 of 20
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius. Recall the radius is the distance from the center of the circle to any point on the edge of the circle.
From looking at the picture, we can see that the radius is 4. With this information, we can plug it into the general circle equation
The general circle equation is,
Now we substitute for ,
, and
. When we plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at .
The next step it to find the radius. Recall the radius is the distance from the center of the circle to any point of the circle's edge.
From looking at the picture, we can see that the radius is 6.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
.
When we plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at .
The next step it to find the radius From looking at the picture, we can see that the radius is 6.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
.
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius From looking at the picture, we can see that the radius is 4.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture, we can see that the center is at
The next step it to find the radius. From looking at the picture,
we can see that the radius is 9.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
.
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius From looking at the picture, we can see that the radius is 1.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius From looking at the picture, we can see that the radius is 4.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle If we look at the picture,
we can see that the center is at
The next step it to find the radius. From looking at the picture, we can see that the radius is 6. With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
.
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius. From looking at the picture, we can see that the radius is 2. With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius. From looking at the picture, we can see that the radius is 2. With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius. From looking at the picture, we can see that the radius is 6. With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at .
The next step it to find the radius. From looking at the picture, we can see that the radius is 2.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for ,
, and
We plug in the values, we get
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is .
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at .
Now we need to figure out what the distance from the center to the foci is .
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 5.0 and
with -7
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is .
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for .
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to the foci is .
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 9.0 and
with -7
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is.
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to the foci is.
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 9.0 and
with -4
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is.
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to the foci is .
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate.
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 8.0 and
with 1
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is.
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out the distance from the center to the foci .
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 1.0 and
with -3.
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is.
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to where the foci is.
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 9.0 and
with
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is.
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to the foci is.
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 6.0 and
with 7
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above
Find the equation of an ellipse that has foci at and
with a major axis distance of
.
The general equation is
is the coordinates of the center of the foci.
is the distance to the foci on the x-axis from the center, and
is the distance to the foci from the y-axis.
The first step is to figure out what the focal radii is ().
Since we know the distance of the major axis, all we need to do is set up a simple equation.
Now solve for
The next step is to find the center between the foci.
To find the center, we simply find the average between the coordinates.
So the center of the foci is at
Now we need to figure out what the distance from the center to the foci .
We do this by taking the x-coordinate from one of the foci and subtracting it from the center x-coordinate
Now the last part is to find .
We can find it by using the following equation.
We simply substitute with 7.0 and
with
Now we can substitute these values into the general equation to get.
Compare your answer with the correct one above