Card 0 of 20
In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?
Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100√2=c. 10√2=c
Compare your answer with the correct one above
Jim leaves his home and walks 10 minutes due west and 5 minutes due south. If Jim could walk a straight line from his current position back to his house, how far, in minutes, is Jim from home?
By using Pythagorean Theorem, we can solve for the distance “as the crow flies” from Jim to his home:
102 + 52 = _x_2
100 + 25 = _x_2
√125 = x, but we still need to factor the square root
√125 = √25*5, and since the √25 = 5, we can move that outside of the radical, so
5√5= x
Compare your answer with the correct one above
Angela drives 30 miles north and then 40 miles east. How far is she from where she began?
By drawing Angela’s route, we can connect her end point and her start point with a straight line and will then have a right triangle. The Pythagorean theorem can be used to solve for how far she is from the starting point: a2+b2=c2, 302+402=c2, c=50. It can also be noted that Angela’s route represents a multiple of the 3-4-5 Pythagorean triple.
Compare your answer with the correct one above
An airplane is 8 miles west and 15 miles south of its destination. Approximately how far is the plane from its destination, in miles?
A right triangle can be drawn between the airplane and its destination.
Destination
15 miles Airplane
8 miles
We can solve for the hypotenuse, x, of the triangle:
82 + 152 = x2
64 + 225 = x2
289 = x2
x = 17 miles
Compare your answer with the correct one above
To get from his house to the hardware store, Bob must drive 3 miles to the east and then 4 miles to the north. If Bob was able to drive along a straight line directly connecting his house to the store, how far would he have to travel then?
Since east and north directions are perpendicular, the possible routes Bob can take can be represented by a right triangle with sides a and b of length 3 miles and 5 miles, respectively. The hypotenuse c represents the straight line connecting his house to the store, and its length can be found using the Pythagorean theorem: _c_2 = 32+ 42 = 25. Since the square root of 25 is 5, the length of the hypotenuse is 5 miles.
Compare your answer with the correct one above
Justin travels to the east and
to the north. How far away from his starting point is he now?
This is solving for the hypotenuse of a triangle. Using the Pythagorean Theorem, which says that
Compare your answer with the correct one above
You leave on a road trip driving due North from Savannah, Georgia, at 8am. You drive for 5 hours at 60mph and then head due East for 2 hours at 50mph. After those 7 hours, how far are you Northeast from Savannah as the crow flies (in miles)?
Distance = hours * mph
North Distance = 5 hours * 60 mph = 300 miles
East Distance = 2 hours * 50 mph = 100 miles
Use Pythagorean Theorem to determine Northeast Distance
3002 + 1002 =NE2
90000 + 10000 = 100000 = NE2
NE = √100000
Compare your answer with the correct one above
A park is designed to fit within the confines of a triangular lot in the middle of a city. The side that borders Elm street is 15 feet long. The side that borders Broad street is 23 feet long. Elm street and Broad street meet at a right angle. The third side of the park borders Popeye street, what is the length of the side of the park that borders Popeye street?
This question requires the use of Pythagorean Theorem. We are given the length of two sides of a triangle and asked to find the third. We are told that the two sides we are given meet at a right angle, this means that the missing side is the hypotenuse. So we use a2 + b2 = c2, plugging in the two known lengths for a and b. This yields an answer of 27.46 feet.
Compare your answer with the correct one above
Daria and Ashley start at the same spot and walk their two dogs to the park, taking different routes. Daria walks 1 mile north and then 1 mile east. Ashley walks her dog on a path going northeast that leads directly to the park. How much further does Daria walk than Ashley?
First let's calculate how far Daria walks. This is simply 1 mile north + 1 mile east = 2 miles. Now let's calculate how far Ashley walks. We can think of this problem using a right triangle. The two legs of the triangle are the 1 mile north and 1 mile east, and Ashley's distance is the diagonal. Using the Pythagorean Theorem we calculate the diagonal as √(12 + 12) = √2. So Daria walked 2 miles, and Ashley walked √2 miles. Therefore the difference is simply 2 – √2 miles.
Compare your answer with the correct one above
Max starts at Point A and travels 6 miles north to Point B and then 4 miles east to Point C. What is the shortest distance from Point A to Point C?
This can be solved with the Pythagorean Theorem.
62 + 42 = _c_2
52 = _c_2
c = √52 = 2√13
Compare your answer with the correct one above
Kathy and Jill are travelling from their home to the same destination. Kathy travels due east and then after travelling 6 miles turns and travels 8 miles due north. Jill travels directly from her home to the destination. How miles does Jill travel?
Kathy's path traces the outline of a right triangle with legs of 6 and 8. By using the Pythagorean Theorem
miles
Compare your answer with the correct one above
Sam and John both start at the same point. Sam walks 30 feet north while John walks 40 feet west. How far apart are they at their new locations?
Sam and John have walked at right angles to each other, so the distance between them is the hypotenuse of a triangle. The distance can be found using the Pythagorean Theorem.
Compare your answer with the correct one above
Susie walks north from her house to a park that is 30 meters away. Once she arrives at the park, she turns and walks west for 80 meters to a bench to feed some pigeons. She then walks north for another 30 meters to a concession stand. If Susie returns home in a straight line from the concession stand, how far will she walk from the concession stand to her house, in meters?
Susie walks 30 meters north, then 80 meters west, then 30 meters north again. Thus, she walks 60 meters north and 80 meters west. These two directions are 90 degrees away from one another.
At this point, construct a right triangle with one leg that measures 60 meters and a second leg that is 80 meters.
You can save time by using the 3:4:5 common triangle. 60 and 80 are and
, respectively, making the hypotenuse equal to
.
We can solve for the length of the missing hypotenuse by applying the Pythagorean theorem:
Substitute the following known values into the formula and solve for the missing hypotenuse: side .
Susie will walk 100 meters to reach her house.
Compare your answer with the correct one above
If and
, how long is side
?
This problem is solved using the Pythagorean theorem . In this formula
and
are the legs of the right triangle while
is the hypotenuse.
Using the labels of our triangle we have:
Compare your answer with the correct one above
In a rectangle, the width is 6 feet long and the length is 8 feet long. If a diagonal is drawn through the rectangle, from one corner to the other, how many feet long is that diagonal?
Given that a rectangle has all right angles, drawing a diagonal will create a right triangle the legs are each 6 feet and 8 feet.
We know that in a 3-4-5 right triangle, when the legs are 3 feet and 4 feet, the hypotenuse will be 5 feet.
Given that the legs of this triangle are twice as long as those in the 3-4-5 triangle, it follows that the hypotense will also be twice as long.
Thus, the diagonal in through the rectangle creates a 6-8-10 triangle. 10 is therefore the length of the diagonal.
Compare your answer with the correct one above
Give the perimeter of the above parallelogram if .
By the Theorem:
, and
The perimeter of the parallelogram is
Compare your answer with the correct one above
If James traveled north and John traveled
west from the same town, how many miles away will they be from each other when they reach their destinations?
The distances when put together create a right triangle.
The distance between them will be the hypotenuse or the diagonal side.
You use Pythagorean Theorem or to find the length.
So you plug and
for
and
which gives you,
or
.
Then you find the square root of each side and that gives you your answer of .
Compare your answer with the correct one above
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
Compare your answer with the correct one above
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
Compare your answer with the correct one above
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
Compare your answer with the correct one above