Card 0 of 20
What is the first derivative of f(x) = sin(x)ln(cos(x))?
This is a mixture of the product rule and the chain rule:
The first term of the product rule is: cos(x)ln(cos(x))
The second term will have sin(x) but will include the differentiation of the ln(cos(x)), which will require the chain rule:
sin(x) * (1/cos(x)) * (–sin(x)) = –sin2(x)/cos(x)
Combining both we get:
cos(x)ln(cos(x)) – sin2(x)/cos(x)
Now, note that none of the answers are the same as this ;however, we can make an alteration:
sin(x)/cos(x) is the same as tan(x)
Therefore, the answer is: cos(x)ln(cos(x)) – tan(x)sin(x)
Compare your answer with the correct one above
What is the first derivative of f(x) = sin(cos(tan(sin(x))))
Okay, don't be overwhelmed. Take this chain rule one step at a time:
Step 1: Do the sine...
cos(cos(tan(sin(x))))
Step 2: Do the cosine . . .
–sin(tan(sin(x)))
Step 3: do the tangent . . . this is the simple chain rule, so diffentiate the argument as well
sec2(sin(x))cos(x)
Step 4: Multiply them together:
–cos(cos(tan(sin(x)))) * sec2(sin(x))cos(x) * sin(tan(sin(x)))
Compare your answer with the correct one above
What is the first derivative of f(x) = sec(x2 + 4x)?
This is a simple chain rule. The derivative of the secant is secant * tangent; therefore:
f'(x) = sec(x2 + 4x) * tan(x2 + 4x) * (2x + 4)
Distribute everything to get your answer: 2x * sec(x2 + 4x)tan(x2 + 4x) + 4sec(x2 + 4x)tan(x2 + 4x)
Compare your answer with the correct one above
What is the first derivative of f(x) = cos4(x2)
Consider this as a chain rule case. Do each step:
Step 1: cos4
4cos3(x2)
Step 2: cos(x2); this can be treated like a normal case of the chain rule
–sin(x2) * 2x
Combining these, we get
–8x * sin(x2)cos3(x2)
Compare your answer with the correct one above
What is the first derivative of f(x) = (100/x2) + (50/x) – 200x2?
f(x) = (100/x2) + (50/x) – 200x2
First, rewrite the equation: 100x–2 + 50x–1 – 200x2
At this point, it is relatively easy to differentiate:
f'(x) = –2 * 100x–3 – 50x–2 – 400x = (–200/x3) – (50/x2) – 400x
Simplify by making x3 the common denominator:
(–200 – 50x – 400x4)/x3
Factor out the common –50 in the numerator to make things look nicer:
–50(4 + x + 8x4)/x3
Compare your answer with the correct one above
What is the first derivative of f(x) = 2x * ln(sin(x))?
f(x) = 2x * ln(sin(x))
Here, we have a product rule with a chain rule.
The derivative of ln(sin(x)) = (1/sin(x)) * cos(x). Note that this is cot(x).
Therefore, our full derivative is:
f'(x) = 2ln(sin(x)) + 2x * cot(x) = 2(ln(sin(x)) + x * cot(x))
Compare your answer with the correct one above
What is the first derivative of f(x) = sin4(x) – cos3(x)?
f(x) = sin4(x) – cos3(x)?
Treat these as chain rules:
The derivative of sin4(x) is therefore: 4sin3(x)cos(x)
The derivative of cos3(x) is therefore: 3cos2(x) * –sin(x) or –3cos2(x)sin(x)
This gives us 4sin3(x)cos(x) + 3cos2(x)sin(x), which really cannot be simplified any further.
Compare your answer with the correct one above
What is the the first derivative of f(x) = 2tan(x)?
This is a case of the chain rule.
Step 1: Deal with the exponential function
ln(2) * 2tan(x)
Step 2: Deal with the exponent
sec2(x)
Multiply them together to get your answer:
sec2(x) * ln(2) * 2tan(x)
Compare your answer with the correct one above
What is the first derivative of f(x) = sin4(x) – cos4(x)?
Applying the chain rule to each element, we get:
f'(x) = 4sin3(x)cos(x) + 4cos3(x)sin(x)
If we factor out the common factors, we get:
f'(x) = 4sin(x)cos(x)(sin2(x) + cos2(x)) = 4sin(x)cos(x)(1) = 4sin(x)cos(x)
Also, since we know that 2sin(x)cos(x) = sin(2x), we know that 4sin(x)cos(x) = 2sin(2x)
Compare your answer with the correct one above
What is the first derivative of f(x) = x2sin(4x3)?
This is a product rule combined with a chain rule. Let's do the chain rule for sin(4x3) first:
cos(4x3) * 12x2 = 12x2cos(4x3)
With this in mind, let's solve our whole problem:
2x * sin(4x3) + x2 * 12x2cos(4x3) = 2x * sin(4x3) + 12x4cos(4x3) = 2x(sin(4x3) + 6x3cos(4x3))
Compare your answer with the correct one above
What is the first derivative of f(x) = x4 – x * sin(x–5)?
The first element is merely differentiated as 4x3
The second element is a relatively simple product rule:
sin(x–5) + x * cos(x–5) * –5 * x–6 = sin(x–5) + cos(x–5) * –5 * x–5 = sin(x–5) – (5 * cos(x–5)/x5)
Put everything back together:
4x3 – ( sin(x–5) – (5 * cos(x–5)/x5) ) = 4x3 – sin(x–5) + (5 * cos(x–5)/x5)
Compare your answer with the correct one above
What is the first derivative of f(x) = 5x * ln(2x)?
This is just a normal product rule problem:
5 * ln(2x) + 5x * 2 * (1/2x)
Simplify: 5ln(2) + 5 = 5(ln(2) + 1)
Compare your answer with the correct one above
What is the slope of the tangent line at x = 2 for f(x) = 6/x2?
First rewrite your function to make this easier:
f(x) = 6/x2 = 6x–2
Now, we must find the first derivative:
f'(x) = –2 * 6 * x–3 = –12/x3
The slope of the tangent line of f(x) at x = 2 is: f'(2) = –12/23 = –12/8 = –3/2 = –1.5
Compare your answer with the correct one above
What is the slope of the line tangent to f(x) = x4 – 3x–4 – 45 at x = 5?
First we must find the first derivative of f(x).
f'(x) = 4x3 + 12x–5
To find the slope of the tangent line of f(x) at 5, we merely have to evaluate f'(x) at 5:
f'(5) = 4*53 + 12* 5–5 = 500 + 12/3125 = 500.00384
Compare your answer with the correct one above
What is the first derivative of f(x) = 2ln(cos(x)sin(x))?
This requires both the use of the chain rule and the product rule. Start with the natural logarithm: 2/(cos(x)sin(x))
Now, multiply by d/dx cos(x)sin(x), which is: –sin(x)sin(x) + cos(x)cos(x) = cos2(x) – sin2(x)
Therefore, f'(x) = (cos2(x) – sin2(x)) * 2/(cos(x)sin(x)) = 2(cos2(x) – sin2(x))sec(x)csc(x)
From our trigonometric identities, we know cos2(x) – sin2(x) = cos(2x)
Therefore, we can finilize our simplification to f'(x) = 2cos(2x)sec(x)csc(x)
Compare your answer with the correct one above
Integrate
We can use trigonometric identities to transform integrals that we typically don't know how to integrate.
Thus,
Compare your answer with the correct one above
Find the slope of the function .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
Take the partial derivatives of
x:
y:
z:
The slope is
Compare your answer with the correct one above
Find the derivative.
Use the quotient rule.
The derivative is .
Compare your answer with the correct one above
Find the derivative.
Use the quotient rule to find the derivative.
Thus, the derivative is .
Compare your answer with the correct one above
Find the derivative.
Use the product rule to find the derivative.
Simplify, and the derivative is .
Compare your answer with the correct one above