CLEP Calculus › Regions
What is the area below and above the
-axis?
What is the area below and above the
-axis?
What is the area below and above the
-axis?
A prolate spheroid (two out of three axes are equal, and less than the third) with an equaitorial radius (the length of the two equal axes) of 1 and a major axes(the horizontal length) of 12, has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 5 units to the left of the origin and the second cut is 4 units to the left of the origin, what is the volume of the segment?
A sphere with a radius of 3 has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 2 units to the left of the origin and the second cut is 1 unit to the right of the origin, what is the volume of the segment?
A sphere with a radius of 3 has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 2 units to the left of the origin and the second cut is 1 unit to the right of the origin, what is the volume of the segment?
A prolate spheroid (two out of three axes are equal, and less than the third) with an equaitorial radius (the length of the two equal axes) of 1 and a major axes(the horizontal length) of 12, has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 5 units to the left of the origin and the second cut is 4 units to the left of the origin, what is the volume of the segment?
A prolate spheroid (two out of three axes are equal, and less than the third) with an equaitorial radius (the length of the two equal axes) of 1 and a major axes(the horizontal length) of 12, has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 5 units to the left of the origin and the second cut is 4 units to the left of the origin, what is the volume of the segment?
A sphere with a radius of 3 has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 2 units to the left of the origin and the second cut is 1 unit to the right of the origin, what is the volume of the segment?
A sphere with a radius of 7 has a segment with perpendicular planes cut out of it, such as is pictured above.
If the first cut is 6 units to the left of the origin and the second cut is 5 units to the left of the origin, what is the volume of the segment?