Ratio Test and Comparing Series - AP Calculus BC

Card 0 of 20

Question

Determine what the following series converges to using the Ratio Test, and whether the series is convergent, divergent or neither.

Answer

To determine if

is convergent, divergent or neither, we need to use the ratio test.

The ratio test is as follows.

Suppose we a series . Then we define,

.

If

the series is absolutely convergent (and hence convergent).

the series is divergent.

the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply this to our situtation.

Let

and

Now

We can rearrange the expression to be

We can simplify the expression to

When we evaluate the limit, we get.

.

Since , we have sufficient evidence to conclude that the series is divergent.

Compare your answer with the correct one above

Question

Use the ratio test to determine if the series diverges or converges:

Answer

The series converges.

Compare your answer with the correct one above

Question

Which of these series cannot be tested for convergence/divergence properly using the ratio test? (Which of these series fails the ratio test?)

Answer

The ratio test fails when . Otherwise the series converges absolutely if , and diverges if .

Testing the series , we have

Hence the ratio test fails here. (It is likely obvious to the reader that this series diverges already. However, we must remember that all intuition in mathematics requires rigorous justification. We are attempting that here.)

Compare your answer with the correct one above

Question

We consider the following series:

Determine the nature of the convergence of the series.

Answer

We will use the comparison test to prove this result. We must note the following:

is positive.

We have all natural numbers n:

, this implies that

.

Inverting we get :

Summing from 1 to , we have

We know that the is divergent. Therefore by the comparison test:

is divergent

Compare your answer with the correct one above

Question

We know that :
and

We consider the series having the general term:

Determine the nature of the series:

Answer

We know that:

and therefore we deduce :

We will use the Comparison Test with this problem. To do this we will look at the function in general form .

We can do this since,

and approach zero as n approaches infinity. The limit of our function becomes,

This last part gives us .

Now we know that and noting that is a geometric series that is convergent.

We deduce by the Comparison Test that the series

having general term is convergent.

Compare your answer with the correct one above

Question

Using the Limit Test, determine the nature of the series:

Answer

We will use the Limit Comparison Test to study the nature of the series.

We note first that , the series is positive.

We will compare the general term to .

We note that by letting and , we have:

.

Therefore the two series have the same nature, (they either converge or diverge at the same time).

We will use the Integral Test to deduce that the series having the general term:

is convergent.

Note that we know that is convergent if p>1 and in our case p=8 .

This shows that the series having general term is convergent.

By the Limit Test, the series having general term is convergent.

This shows that our series is convergent.

Compare your answer with the correct one above

Question

We consider the following series:

Determine the nature of the convergence of the series.

Answer

We will use the Comparison Test to prove this result. We must note the following:

is positive.

We have all natural numbers n:

, this implies that

.

Inverting we get :

Summing from 1 to , we have

We know that the is divergent. Therefore by the Comparison Test:

is divergent.

Compare your answer with the correct one above

Question

Using the ratio test,

what can we say about the series.

where is an integer that satisfies:

Answer

Let be the general term of the series. We will use the ratio test to check the convergence of the series.

The Ratio Test states:

then if,

  1. L<1 the series converges absolutely.

  2. L>1 the series diverges.

  3. L=1 the series either converges or diverges.

Therefore we need to evaluate,

we have,

therefore:

.

We know that

and therefore,

This means that :

By the ratio test we can't conclude about the nature of the series. We will have to use another test.

Compare your answer with the correct one above

Question

Assuming that , . Using the ratio test, what can we say about the series:

Answer

As required by this question we will have to use the ratio test. if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.

To do so, we will need to compute : . In our case:

Therefore

.

We know that

This means that

Since L=1 by the ratio test, we can't conclude about the convergence of the series.

Compare your answer with the correct one above

Question

Consider the following series :

where is given by:

. Using the ratio test, find the nature of the series.

Answer

Let be the general term of the series. We will use the ratio test to check the convergence of the series.

if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.

We need to evaluate,

we have:

.

Therefore:

. We know that,

and therefore

This means that :

.

By the ratio test we can't conclude about the nature of the series. We will have to use another test.

Compare your answer with the correct one above

Question

We consider the series,

.

Using the ratio test, what can we conclude about the nature of convergence of this series?

Answer

Note that the series is positive.

As it is required we will use the ratio test to check for the nature of the series.

We have .

Therefore,

if L>1 the series diverges, if L<1 the series converges absolutely, and if L=1 the series may either converge or diverge.

Since the ratio test concludes that the series converges absolutely.

Compare your answer with the correct one above

Question

Is the series

convergent or divergent, and why?

Answer

We will use the comparison test to prove that

converges (Note: we cannot use the ratio test, because then the ratio will be , which means the test is inconclusive).

We will compare to because they "behave" somewhat similarly. Both series are nonzero for all , so one of the conditions is satisfied.

The series

converges, so we must show that

for .

This is easy to show because

since the denominator is greater than or equal to for all .

Thus, since

and because

converges, it follows that

converges, by comparison test.

Compare your answer with the correct one above

Question

Determine if the following series is divergent, convergent or neither.

Answer

In order to figure out if

is divergent, convergent or neither, we need to use the ratio test.

Remember that the ratio test is as follows.

Suppose we have a series . We define,

Then if

, the series is absolutely convergent.

, the series is divergent.

, the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply the ratio test to our problem.

Let

and

Now

Now lets simplify this expression to

.

Since

.

We have sufficient evidence to conclude that the series is convergent.

Compare your answer with the correct one above

Question

Determine if the following series is divergent, convergent or neither.

Answer

In order to figure if

is convergent, divergent or neither, we need to use the ratio test.

Remember that the ratio test is as follows.

Suppose we have a series . We define,

Then if

, the series is absolutely convergent.

, the series is divergent.

, the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply the ratio test to our problem.

Let

and

Now

.

Now lets simplify this expression to

.

Since ,

we have sufficient evidence to conclude that the series is divergent.

Compare your answer with the correct one above

Question

Determine if the following series is divergent, convergent or neither.

Answer

In order to figure if

is convergent, divergent or neither, we need to use the ratio test.

Remember that the ratio test is as follows.

Suppose we have a series . We define,

Then if

, the series is absolutely convergent.

, the series is divergent.

, the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply the ratio test to our problem.

Let

and

.

Now

.

Now lets simplify this expression to

.

Since ,

we have sufficient evidence to conclude that the series is divergent.

Compare your answer with the correct one above

Question

Determine if the following series is convergent, divergent or neither.

Answer

To determine if

is convergent, divergent or neither, we need to use the ratio test.

The ratio test is as follows.

Suppose we a series . Then we define,

.

If

the series is absolutely convergent (and therefore convergent).

the series is divergent.

the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply this to our situtation.

Let

and

Now

We can rearrange the expression to be

Now lets simplify this.

When we evaluate the limit, we get.

.

Since , we have sufficient evidence to conclude that the series diverges.

Compare your answer with the correct one above

Question

Determine if the following series is divergent, convergent or neither.

Answer

To determine if

is convergent, divergent or neither, we need to use the ratio test.

The ratio test is as follows.

Suppose we a series . Then we define,

.

If

the series is absolutely convergent (and thus convergent).

the series is divergent.

the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply this to our situtation.

Let

and

Now

We can rearrange the expression to be

.

Now lets simplify this.

When we evaluate the limit, we get.

.

Since , we have sufficient evidence to conclude that the series converges.

Compare your answer with the correct one above

Question

Determine if the following series is convergent, divergent or neither.

Answer

To determine if

is convergent, divergent or neither, we need to use the ratio test.

The ratio test is as follows.

Suppose we a series . Then we define,

.

If

the series is absolutely convergent (therefore convergent).

the series is divergent.

the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply this to our situtation.

Let

and

Now

We can rearrange the expression to be

Now lets simplify this.

When we evaluate the limit, we get.

.

Since , we have sufficient evidence to conclude that the series diverges.

Compare your answer with the correct one above

Question

Determine the convergence or divergence of the following series:

Answer

To determine the convergence or divergence of this series, we use the Ratio Test:

If , then the series is absolutely convergent (convergent)

If , then the series is divergent

If , the series may be divergent, conditionally convergent, or absolutely convergent

So, we evaluate the limit according to the formula above:

which simplified becomes

Further simplification results in

Therefore, the series is absolutely convergent.

Compare your answer with the correct one above

Question

Determine if the following series is divergent, convergent or neither.

Answer

To determine if

is convergent, divergent or neither, we need to use the ratio test.

The ratio test is as follows.

Suppose we a series . Then we define,

.

If

the series is absolutely convergent (and thus convergent).

the series is divergent.

the series may be divergent, conditionally convergent, or absolutely convergent.

Now lets apply this to our situtation.

Let

and

Now

We can simplify the expression to be

When we evaluate the limit, we get.

.

Since , we have sufficient evidence to conclude that the series diverges.

Compare your answer with the correct one above

Tap the card to reveal the answer