Card 0 of 20
On which interval(s) is the function increasing and on which interval(s) is it decreasing?
First we must find out critical points by setting equal to zero.
Then we reverse foil to get
These are our critical points. We now must test values on each interval defined by our critical points in order to determine the sign of on each interval.
Our intervals to check are
We have many choices, but let's choose
Thus on our first interval is positive meaning
is increasing.
On our second interval is negative meaning
is decreasing.
And on our third interval is positive meaning
is increasing.
Compare your answer with the correct one above
At what point does shift from decreasing to increasing?
To find out where it shifts from decreasing to increasing, we need to look at the first derivative. The shift will happen where the first derivative goes from a negative value to a positive value.
To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.
Remember that anything to the zero power is one.
Can this equation be negative? Yes. Does it shift from negative to positive? Yes. Therefore, it will shift from negative to positive at the point that .
Compare your answer with the correct one above
Find the derivative of g(t) and tell whether g(t) is increasing or decreasing on the interval \[5,6\].
Find the derivative of g(t) and tell whether g(t) is increasing or decreasing on the interval \[5,6\]
First, find the derivative by decreasing each exponent by 1 and multiplying the coefficient by that number.
Next, plug in our two endpoints of our interval to see what the sign of g'(t) is.
Now, clearly these are both negative, and every point between them will be negative. This means that function g(t) is decreasing on this interval.
Compare your answer with the correct one above
What does the sign of the first derivative tell us about whether a function is increasing or decreasing?
What does the sign of the first derivative tell us about whether a function is increasing or decreasing?
The first derivative test is used to tell whether a function is increasing or decreasing at a certain point or interval.
To use this test, first find the derivative of your function. Then, plug in the values for the point(s) and see what sign you get on your values.
If the value of your first derivative is negative, then your function is decreasing. If the value of your first derivative is positive, your original function is increasing. If your first derivative is 0, then you have a point of inflection in your original function.
Compare your answer with the correct one above
Use the first derivative test to tell whether f(c) is increasing or decreasing when c=24.
Use the first derivative test to tell whether f(c) is increasing or decreasing when c=24
Begin by finding the first derivative of f(c)
Next, plug in 24 for c and find the sign of our first derivative.
Now, our first derivative is positive, so our original function must be increasing.
Compare your answer with the correct one above
Tell whether f is increasing or decreasing when . How do you know?
Tell whether f is increasing or decreasing when . How do you know?
To test for increasing/decreasing, we need to find the first derivative.
In this case, we can use the power rule to do all our differentiation.
Power rule:
We will use this on each term in order to find our first and then second derivative.
For each term, we will decrease the exponent by 1, and then multiply by the original exponent.
Now, we need to find the sign of f'(-12). This will tell us if it is increasing or decreasing.
So, we get
So,
f(x) is decreasing, because
Compare your answer with the correct one above
Determine the intervals on which the function is increasing:
To determine the intervals on which the function is increasing, we must determine the intervals on which the function's first derivative is positive.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals on which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, on the second interval, the first derivative is negative, on the third interval, the first derivative is positive, on the fourth interval, the first derivative is negative, and on the fifth interval, the first derivative is positive. Therefore, the function is increasing on the intervals .
Compare your answer with the correct one above
Determine the intervals on which f is decreasing, for its entire domain:
To determine the intervals on which the function is decreasing, we must determine the intervals on which the function's first derivative is negative.
The first derivative of the function is equal to
and was found using the following rule:
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
On the first interval, the first derivative is negative, while on the remaining intervals, the first derivative is positive. Thus, the function is decreasing on the first interval, .
Compare your answer with the correct one above
Determine the intervals on which f is decreasing:
To determine the intervals on which the function is decreasing, we must determine the intervals on which the function's first derivative is negative.
The first derivative of the function is equal to
and was found using the following rule:
Next, we must find the critical values, at which the first derivative is equal to zero:
The square root of a negative number is not valid for a critical value, so we only have one critical value for this function.
Using the critical value, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
On the first interval, the first derivative is positive, and on the second interval, the first derivative is positive as well. The function is therefore never decreasing because the first derivative is never negative.
Compare your answer with the correct one above
Determine the intervals on which f is increasing:
To determine the intervals on which the function is increasing, we must determine the intervals on which the function's first derivative is positive.
The first derivative of the function is equal to
and was found using the following rules:
,
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Note that we stopped writing critical values based on the given interval in the problem statement.
Using the critical values, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is negative, while on the second interval, the first derivative is positive. Thus, the function is increasing on the second interval, .
Compare your answer with the correct one above
Find the local maxima for the following function:
To determine the local maxima of the function, we must determine the points at which the function's first derivative changes from positive to negative.
The first derivative of the function is
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical value as an endpoint, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, and on the second interval, the first derivative is positive as well. There is no sign change of the first derivative, thus there are no local maxima (the function is always increasing).
Compare your answer with the correct one above
Determine the local minima of the following function:
To determine the local minima of the function, we must determine the points at which the function's first derivative changes from negative to positive.
The first derivative of the function is
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical value as an endpoint, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is negative, and on the second interval, the first derivative is positive. There is a sign change from negative to positive of the first derivative at , thus a local minima exists here.
Compare your answer with the correct one above
Determine the local minima of the following function:
To determine the local minima of the function, we must determine the points at which the function's first derivative changes from negative to positive.
The first derivative of the function is
and was found using the following rules:
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical value as an endpoint, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is negative, and on the second interval, the first derivative is also negative. The first derivative never changed in sign from negative to positive, thus the function has no local minima.
Compare your answer with the correct one above
Determine the intervals on which the function is increasing:
To determine the intervals on which the function is increasing, we must determine the intervals on which the function's first derivative is positive.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals on which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, on the second interval, the first derivative is negative, and on the third interval, the first derivative is positive. Thus, the function is increasing on the first and third intervals, .
Compare your answer with the correct one above
Determine the intervals on which the function is decreasing:
To determine the intervals on which the function is decreasing, we must determine the intervals on which the function's first derivative is negative.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
(Note that the method of completing the square was shown for solving for the critical values. One could use the quadratic formula as well.)
Using the critical values, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, on the second interval, the first derivative is negative. and on the third interval, the first derivative is positive. Thus, the interval on which the first derivative is negative is the interval where the function is decreasing, .
Compare your answer with the correct one above
Let .
A relative minimum of the graph of can be located at:
At a relative minimum of the graph
, it will hold that
and
.
First, find . Using the sum rule,
Differentiate the individual terms:
Set this equal to 0:
Either:
, in which case,
; this equation has no real solutions.
has two real solutions,
and
.
Now take the second derivative, again using the sum rule:
Substitute for
:
Therefore, has a relative maximum at
.
Now. substitute for
:
Therefore, has its only relative minimum at
.
Compare your answer with the correct one above
Find the intervals on which the function is decreasing:
To determine the intervals on which the function is decreasing, we must determine the intervals on which the function's first derivative is negative.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Note that factoring by grouping was used to find the critical values.
Using the critical values, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is negative, on the second interval, the first derivative is positive, on the third interval, the first derivative is negative, and on the fourth interval, the first derivative is positive. The intervals on which the function is decreasing are the intervals on which the first derivative was negative, .
Compare your answer with the correct one above
Determine the intervals on which the following function is increasing:
To determine the intervals on which the function is increasing, we must determine the intervals on which the function's first derivative is positive.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals over which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, on the second interval, the first derivative is negative, and on the third interval, the first derivative is positive. The function is therefore increasing on two intervals, , on which we just showed the first derivative was positive.
Compare your answer with the correct one above
Find the intervals on which the function is decreasing:
To determine the intervals on which the function is decreasing, we must determine the intervals on which the function's first derivative is negative.
The first derivative of the function is equal to
and was found using the following rules:
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals on which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative function, we find that on the first interval, the first derivative is positive, on the second interval, the first derivative is negative, and on the third interval, the first derivative is positive. Thus, we know that the function is decreasing on the second interval, .
Compare your answer with the correct one above
Determine the local maxima of the function:
To determine the values at which the function has a local maximum, we must determine the values at which the sign of the first derivative changes from positive to negative.
The first derivative of the function is equal to
and was found using the following rules:
,
,
Next, we must find the critical values, at which the first derivative is equal to zero:
Using the critical values, we now create intervals on which to evaluate the sign of the first derivative:
Notice how at the bounds of the intervals, the first derivative is neither positive nor negative.
Evaluating the sign simply by plugging in any value on the given interval into the first derivative, we find that on the first interval, the first derivative is negative, on the second interval, the first derivative is positive, and on the third interval, the first derivative is negative. The first derivative changes from positive to negative at , thus there is exists a local maximum.
Compare your answer with the correct one above