Understanding the Electron Transport Chain - AP Biology

Card 0 of 20

Question

Which of the following molecules is the final electron acceptor in the electron transport chain during cellular respiration?

Answer

Oxygen is the final electron acceptor in the electron transport chain, showing the need for aerobic conditions to undergo such a process. ATP is produced as a product of the electron transport chain, while glucose and CO2 play a role in earlier processes of cellular respiration.

Compare your answer with the correct one above

Question

Cellular respiration is dependent on which of the following atoms?

Answer

In cellular respiration, oxygen is the final electron acceptor. Oxygen accepts the electrons after they have passed through the electron transport chain and ATPase, the enzyme responsible for creating high-energy ATP molecules. Just remember cellular **respiration—**respiration means breathing, and you cannot breathe without oxygen.

Compare your answer with the correct one above

Question

How many potential ATP can be produced when one molecule of glyceraldehyde-3-phosphate is put through glycolysis?

Answer

Glyceraldehyde-3-phosphate is converted to 1,3-bisphosphoglycerate, and one NADH is also produced during that step. NADH enters the electron transport chain, and is therefore worth ATP. Normally, an NADH is worth about 2.5 ATP; however, an NADH produced in glycolysis is only worth 1.5 ATP because it costs 1 ATP to move that NADH from the cytoplasm into the mitochondria. So, in this first step, we have a total of 1.5 ATP.

As the molecule continues on its path to become pyruvate, it will also produce two ATP directly; therefore, we have a net total of 3.5 potential ATP.

Compare your answer with the correct one above

Question

Most of the ATP produced in cellular respiration comes from which of the following processes?

Answer

Cellular respiration typically follows three steps, under aerobic conditions. Glycolysis generates NADH and converts glucose to pyruvate, while producing small amounts of ATP through substrate-level phosphorylation. The citric acids cycle, or Krebs cycle, uses pyruvate to generate more NADH and FADH2. These NADH and FADH2 molecules donate electrons to the electron transport chain, which are used to pump protons into the intermembrane space of the mitochondrion. The protons in the intermembrane space then flow through ATP synthase to generate large amounts of ATP via oxidative phosphorylation.

Compare your answer with the correct one above

Question

Why is oxygen essential for the electron transport chain?

Answer

Oxygen serves as the terminal electron acceptor for the electron transport chain. Electrons are donated by NADH molecules and passed through several different proteins to generate the proton gradient in the intermembrane space. Upon reaching the final protein, the electron is bonded to an oxygen molecule to create water. Without oxygen, there would be nowhere for the electrons to go after being pumped through the electron transport chain, and aerobic cellular respiration would be impossible.

Compare your answer with the correct one above

Question

What happens to the electron transport chain when oxygen is not available?

Answer

Oxygen is the final electron acceptor in the electron transport chain, which allows for oxidative phosphorylation. Without oxygen, the electrons will be backed up, eventually causing the electron transport chain to halt. This will cause the products of glycolysis to go through fermentation instead of going to the citric acid cycle. Without oxygen, oxidative phosphorylation (the electron transport chain) is impossible, but substrate-level phosphorylation (glycolysis) continues.

Compare your answer with the correct one above

Question

If cellular respiration were 100% efficient, the process should produce around eighty ATP, however, the actual yield is around thirty ATP. What happens to the rest of the chemical energy in glucose?

Answer

Cellular respiration is only about 38% efficient, with the rest of the energy in glucose lost as heat.

Water and carbon dioxide are not used to store energy. Fats can be synthesized from acetyl CoA and glycerol, but are not generally created in large quantities during cellular respiration. Starches are generally used for energy storage in plants, but can be synthesized from glucose; however, starches are not a standard product of cellular respiration.

Most of the reactions in cellular respiration are exothermic, in order to support spontaneous reaction. The result is release of heat energy with most steps.

Compare your answer with the correct one above

Question

Which of the following processes requires an electron acceptor?

Answer

Oxygen acts as the terminal electron acceptor in the electron transport chain (ETC). This accounts for the reason as to why, when cells are starved of oxygen, the ETC "backs up" and the cell will divert to using anaerobic respiration, such as fermentation. At the end of the electron transport chain, the electron and a proton are passed to an oxygen molecule to produce water.

The citric acid cycle depends on oxygen in an indirect sense. The main purpose of the cycle is to produce electron donors for the electron transport chain. If the chain is not functional (due to lack of oxygen), the citric acid cycle also stops functioning. Glycolysis is not dependent on oxygen, and can function in anaerobic environments.

Compare your answer with the correct one above

Question

The chemical compound 2,4-dinitrophenol can disrupt the process of oxidative phosphorylation in the mitchondrial electron transport chain by causing which effect?

Answer

In ATP synthesis, the proton gradient is an interconvertible form of energy in electron transport. 2,4-dinitrophenol is an inhibitor of ATP production in cells with mitochondria. Its mechanism of action involves carrying protons across the mitochondrial membrane, which leads to the consumption of energy without ATP production.

The other answer choices are not directly related to the generation of the proton gradient.

Compare your answer with the correct one above

Question

Along what structure do electrons in the electron transport chain (ETC) move?

Answer

The events of the electron transport chain take place on the inner membrane of the mitochondria. The transmembrane proteins used to shuttle electrons through the electron transport chain are embedded on the inner membrane. Electrons are donated to these proteins and used to transfer protons into the intermembrane space from the matrix. After reaching the final inner membrane protein in the chain, the electron is transferred to oxygen to form water.

The mitochondrial matrix is where the ATP eventually is eventually synthesized, as well as the site of the citric acid cycle. The cytoplasm is the site of glycolysis. The outer mitochondrial membrane is not directly involved in cellular respiration.

Compare your answer with the correct one above

Question

What is the function of the molecules NADH and FADH2 during the electron transport chain (ETC)?

Answer

NADH and FADH2 are electron carriers that have the important function of actually bringing electrons to the electron transport chain. Proteins embedded in the inner membrane of the mitochondria oxidize these molecules. The proteins then transfer the electrons through a series of processes in order to pump protons into the intermembrane space, creating an electrochemical gradient. The final protein in the chain passes the electron to an oxygen molecule to generate water, and the protons in the intermembrane space can then be used to drive the function of ATP synthase to create ATP/

NADH and FADH2 are not directly involved in ATP synthesis and oxygen is the ultimate electron acceptor in the electron transport chain.

Compare your answer with the correct one above

Question

How does the cell generate the required energy to synthesize ATP from the electron transport chain?

Answer

The direct purpose of moving electrons down the electron transport chain is to pump protons (hydrogen ions) into the intermembrane space. This creates a chemiosmotic gradient that the cell uses to generate ATP by selectively allowing hydrogen ions to move back into the mitochondrial matrix.

Energy is not directly captured as electrons travel down the electron transport chain to synthesize ATP. GTP is a product of the Krebs cycle and can be used to generate cellular energy, but is not involved in synthesizing ATP or the electron transport chain. Other metabolic processes are often used to regulate glucose concentrations in the blood, indirectly influencing the rate of glycolysis and cellular respiration, but these processes do not directly provide energy for the electron transport chain.

Compare your answer with the correct one above

Question

What is the final electron acceptor in the electron transport chain?

Answer

Electrons from electron carriers, such as NADH and FADH2, go through the electron transport chain, which involves a series of molecules that accept and donate electrons. Transfer to the electron through these proteins results in the net movement of protons across the inner mitochondrial membrane and into the intermembrane space, generating the proton gradient that will drive ATP synthase.

The final molecule in the electron transport chain is oxygen. The oxygen molecule accepts the electron from the final protein in the chain and becomes water, one of the final products of metabolism. Remember that each subsequent molecule in the electron transport chain has a higher affinity for electrons than the molecule before it; therefore, the final electron acceptor will have the highest affinity for electrons. Oxygen has a very high electronegativity, making it a good electron acceptor.

Compare your answer with the correct one above

Question

ATP synthase is found in the region of mitochondria with the highest concentration of __________.

Answer

ATP synthase is an enzyme that facilitates the generation of energy (ATP) in cells. It uses the proton gradient created by the electron transport chain to create ATP through oxidative phosphorylation. ATP synthase is an integral membrane protein in the inner membrane of mitochondria. Recall that all membranes are mostly made up of phospholipids (a type of lipid).

Compare your answer with the correct one above

Question

What happens when electrons get transported along the electron transport chain?

Answer

When electrons go through the electron transport chain, the protons in the matrix of the mitochondrion are pumped into the intermembrane space (the space between inner and outer membranes). This creates a proton gradient that is used by ATP synthase to create ATP through oxidative phosphorylation, not substrate-level phosphorylation. Remember that substrate-level phosphorylation is used by glycolysis and the Krebs cycle to generate ATP.

When electrons travel down the series of molecules in the electron transport chain they go from molecules of low electron affinity to molecules high electron affinity. The next molecule in the series must have higher affinity so that it can pull the electron away from its predecessor.

Compare your answer with the correct one above

Question

Dinitrophenol (DNP) is a known uncoupling agent, which is capable of inhibiting the mitochondria's ability to maintain a proton gradient. How might this affect the function of the mitochondria?

Answer

ATP synthase, the enzyme responsible for ATP production on the inner mitochondrial membrane, depends on the proton gradient produced by the electron transport chain (ETC). If the proton gradient is disrupted, not as many ATP can be produced.

NADH and FADH2 are essential to the function of the electron transport chain as electron donors, and are produced during glycolysis and the Krebs cycle to facilitate this process. Electron donation from these compounds is what fuels the formation of the proton gradient, while decreases in these compounds can cause uncoupling.

Compare your answer with the correct one above

Question

Which of the following describes the role of chemiosmosis in cellular respiration?

Answer

Oxidative phosphorylation is composed of electron transport and chemiosmosis. Chemiosmosis occurs when ions cross a selectively permeable membrane down their concentration gradient. In cellular respiration, hydrogen ions (protons) move down their concentration gradient through a membrane protein to produce ATP. The gradient of protons is established by the electron transport portion of oxidative phosphorylation, which is used to transfer protons into the intermembrane space. Protein complexes I, II, III, and IV help protons to cross the membrane.

Substrate-level phosphorylation occurs during glycolysis, and does not utilize chemiosmosis.

Compare your answer with the correct one above

Question

Why does a single molecule of NADH, on average, produce more ATP than a single molecule of FADH2?

Answer

Both NADH and FADH2 donate two electrons to the electron transport chain, so theoretically they should make the same amount of ATP. However, NADH donates its electrons to complex I while FADH2 donates its electrons further "downstream" at complex II. Because complex I is a site for pumping protons into the intermembrane space, FADH2's electrons will not pump as many protons as those from NADH. This results in more ATP being generated from a single molecule of NADH than a single molecule of FADH2.

Compare your answer with the correct one above

Question

The reason why we need glucose in our diet is to regenerate ATP from ADP. Once the body absorbs glucose, it is broken down to pyruvate via glycolysis. In the presence of oxygen, pyruvate is facilitated into the Krebs cycle within the inner mitochondrial membrane. During the Krebs cycle, protons are extracted and are then pumped into the intermembrane space of the mitochondria against its concentration gradient. Releasing protons into the intermembrane space creates a gradient between the intermembrane space and the inner mitochondrial membrane. This gradient provides the energy to regenerate the ATP from ADP by way of ATP synthase.

Which of the following best describes the primary consequence of injecting a base (eg. NaOH) into the intermembrane space of the mitochondria?

Answer

The Krebs cycle creates a proton gradient between the intermembrane space and the inner mitochondrial membrane. This proton gradient provides the energy necessary to drive the proton through the ATP synthase. As the protons are passively diffusing through the ATP synthase, the energy is coupled to phosphorylate ADP to ATP. If a base were injected into this space, then it would would consume these protons due to its electronegativity and decrease ATP synthase’s ability to transform ADP to ATP.

Compare your answer with the correct one above

Question

The enzyme responsible for the generation of ATP through the proton potential in the inner mitochondrial membrane is known as __________.

Answer

The enzyme ATP synthase uses the electromotive force generated by the unequal concentrations of protons across both sides of the membrane to attach a phosphate group to ADP, generating ATP. The passing of a proton from a high concentration to low concentration permits the formation of the ATP molecule. Cytochrome c is an enzyme embedded in the inner mitochondrial membrane, but is not directly associated with ATP synthesis. Succinate dehydrogenase and aldolase are enzymes involved in the Krebs cycle.

Compare your answer with the correct one above

Tap the card to reveal the answer