Card 0 of 20
Populations do not necessarily consist of the individuals best adapted to survive and reproduce. Theoretically, the most fit individuals in a population will survive longest and reproduce the most, however chance plays a role in who survives, reproduces, and whose offspring survive to reproduce as well.
In a population where the allele frequency shifts by random chance, the mechanism of evolution at work is __________.
Genetic drift occurs as a result of chance events causing changes in the allele frequency of a population. It doesn't favor the most fit individuals, but occurs at random.
Mutations can contribute to genetic drift, however, genetic drift is a more specific answer and more relevant to the question at hand.
Compare your answer with the correct one above
The bottleneck effect occurs when a population's size is reduced for at least one generation. Undergoing a bottleneck can greatly reduce the genetic variation in a population, leaving it more susceptible to extinction if it is unable to adapt to climactic changes or changes in resource availablility.
Small populations are especially at risk when a bottleneck occurs, caused by the greater effect __________ can have on small populations.
Small populations tend to have less genetic variation to begin with. Introducing a bottleneck effect further reduces variation and population size, amplifying the effect of genetic drift. This leaves them susceptible to changes in the environment that they may not be capable of adapting to due to limited differences among individuals.
Compare your answer with the correct one above
An ecologist observes a population of snakes on an island for one month every year. After the eleventh month, he sees that the snake population has been decimated, and decides to wait for the snakes to repopulate before coming back for further observation. When he returns five years later, he finds a very homogenous looking population of snakes. What is the name of the effect he observed?
A bottleneck effect is the term used to describe the loss of genetic variation that occurs after outside forces destroy most of a population. The few individuals left to reproduce pass their traits on to all of their offspring, which then may thrive without the competition of a large population. Eventually, there may be a large, very genetically similar population based on the traits of the few original survivors.
The founder effect describes the low genetic variation of a population derived from a small group of individuals in a new geographic location. Genetic drift is the random change of allele frequency in a population.
Compare your answer with the correct one above
What is the founder effect?
The founder effect describes the phenomenon when a smaller group that originally came from a part of a larger population forms their own population. This new population will likely have a biased gene pool that will not be identical to the parent population. For example, if a certain species of bird gains a mutation such that some members are capable of flying farther, these birds may eventually separate to a different location and form their own unique population with a higher predominance of the "sustained flight" mutation than the original population.
The founder effect, after a long time, can lead to speciation, but this is not an essential part of the founder effect. Introducing a new species to native populations may influence the balance of the ecosystem and change genetic frequencies, but is not linked to the founder effect. A decrease in genetic variety due to fluctuation of certain traits would more aptly describe the bottleneck effect.
Compare your answer with the correct one above
What is the bottleneck effect?
The bottleneck effect describes the phenomenon when a population has a sudden reduction in the gene pool due to natural environmental events, natural disasters, disease, or human involvement. This reduction in the gene pool will likely cause a bias that did not exist in the original population. For example, suppose a population of birds has a small number with a mutation making them unable to fly. If a disease reaches this population that kills all birds when they reach an altitude above 50m, then the gene pool of the population will suddenly shift to favor the flightless birds.
The bottleneck effect, after a long time, could potentially lead to speciation, but this is not a defining factor of the effect. Introducing a new species can increase the pressures of natural selection, but does not directly relate to the bottleneck effect. A decrease in genetic variety due to a small number of individuals from a larger population establishing a new population more aptly describes the founder effect.
Compare your answer with the correct one above
In South Africa, there is a population that has a much higher frequency of Huntington's disease than is seen in other regions of the world. The cause is likely due to the fact that this population is descended from a relatively small subset of European colonists.
Which of the following choices best explains the phenomenon observed in this South African population?
The founder effect describes a scenario in which a new population is started by a small group from a larger population. This smaller population is most likely not representative of the larger group and displays certain genetic bias. The high rate of Huntington's disease is most likely a result of the fact that the small group of European colonists had a high rate of the gene that produces the disease.
Natural selection and sympatric speciation do not apply in this situation. The bottleneck effect occurs when a large population is thinned, and a non-representative group of the original population is all that remains; this does not describe the situation presented above.
Compare your answer with the correct one above
Which of the following is true of genetic drift?
Genetic drift is a direct result of independent assortment. Since genes are not inherited by any organized mechanism, there are random fluctuations during which certain alleles experience an increase in frequency over others.
Genetic drift results in random changes in allele frequency; these changes are not a cause of genetic drift. In smaller populations and extreme cases, random changes can result in the loss of an allele entirely within the population. The results of genetic drift are more prominent in smaller populations due to their already reduced gene pool. Since genetic drift is random, both beneficial and harmful alleles can be promoted or eliminated.
Genetic drift cannot increase genetic diversity. The only way to increase genetic diversity is by the introduction of new traits and alleles. Genetic drift can reduce genetic diversity by eliminating alleles from a population, but is incapable of creating new traits. This can only be done through mutation.
Compare your answer with the correct one above
Which of the following is true of genetic drift?
Genetic drift describes the random selection of alleles that are passed from one generation to the next due to independent assortment in gametogenesis. Genetic drift cannot create new alleles, so it cannot increase genetic diversity (the number of alleles in a population). It can, however, decrease genetic diversity if an allele of a low frequency is not passed down to subsequent generations due to pure chance.
There is no hard and fast rule for whether genetic drift or natural selection have had a greater effect on shaping populations. Both have greatly shaped the populations present on Earth today, but their relative importance varies between species and has also varied over time. The conditions of Hardy-Weinberg equilibrium require that both natural selection and genetic drift be negligible. If genetic drift is occurring, then the population cannot be in Hardy-Weinberg equilibrium.
Compare your answer with the correct one above
Which of the following is NOT true of genetic drift?
Genetic drift is the random process of alleles being passed from parents to offspring. Increasing genetic diversity in a population requires introducing a greater number of alleles, which can only occur through mutations or addition of unrelated members to the population. Genetic drift only affects how already-existing alleles are passed down.
If an allele has a high frequency at baseline, the chance of it being passed down to subsequent generations is higher than alleles of a lower frequency. Through random chance, a high-frequency allele can eventually have a frequency of 100%, becoming fixed in the population. Conversely, a low-frequency allele can eventually disappear from the population if none of the few parents who possess that allele happen to pass it onto their offspring.
Compare your answer with the correct one above
Which of the following is an example of gene flow?
Gene flow is a mechanism of evolution in which genes are transferred between populations. Two examples of gene flow are migration and horizontal gene transfer. In the case of migration, the movement of individuals into or out of a population also results in a transfer of alleles. Horizontal gene transfer (common in bacteria) is the transfer of genes through means other than reproduction (i.e. plasmid exchange).
Compare your answer with the correct one above
A massive pre-historic earthquake caused the separation of approximately 500 people from the rest of their much larger population by an impassible fissure in the Earth’s crust. Which of the following would be the LEAST helpful in understanding the immediate future of this sub-group during the next fifty years?
A smaller group being separated permanently from a larger population is a classic example of the founder effect. These 500 members likely have far less genetic diversity than the larger population, so the subsequent population that develops will only contain alleles found in these 500 members.
The founder effect is a particular example of the bottleneck effect, wherein the number of individuals in a population is reduced very quickly from a non-selective pressure, such as a natural disaster or geographic barrier. Though the rest of the larger population is presumably still alive, these 500 people have gone from living in a large population to living in a relatively small one. The result is a decrease in genetic diversity when the smaller portion of the population is compared to the previously-existing larger group.
In the immediate future, this group could experience genetic drift wherein the relative frequencies of their alleles shift due to random chance. Genetic drift is more prominent in smaller groups, and would therefore help to understand what could happen in the population's immediate future. Since the group is relatively small, we could expect to see the results of genetic drift as early as fifty years after the separation event.
Natural selection occurs over many generations and longer time periods. It would not help us to understand the immediate future of this new population.
Compare your answer with the correct one above
Which of the following is true of the bottleneck effect?
The bottleneck effect describes the sudden, sharp decrease in the size of a population. After a bottleneck event, a population could either recover or go extinct depending on the fitness of the individuals remaining in the population.
Depending on the type of event that created the bottleneck, it is possible that the surviving members are the most fit, but this is not always the case. The new smaller population likely has less genetic diversity, which typically makes successful adaption more difficult and less likely, but if the surviving members of the population are highly fit, their ability to adapt may not be hindered.
While man-made events certainly are a source of bottleneck effects in the world today, there are still natural bottleneck events and no concrete evidence to say that man-made bottleneck events are more frequent or have more of an effect on genetic drift than natural events.
Compare your answer with the correct one above
Which scenario best describes genetic drift?
Genetic drift is a change in allele frequencies in a population through random chance. It occurs over time and isn't a result of more fit organisms passing on their genes. In all but one of the answer choices there is some selective pressure that causes a change in the population that is not related to random chance. Thus, the example with the exact same selective pressures is the only scenario that could result in genetic drift. Predation can cause one allele to die out and another to prosper if one allele causes the organism to be better camouflaged. If individuals in a population have a preference for one type of allele then that allele will prosper. Sources of food can also cause an organism to change. For instance, if on one side of the lake the dominant food source is algae and on the other side smaller, quicker fish are the source of food, then over time the fish on either side of the hypothetical lake could diverge. One gaining a better ability to scoop algae and the other becoming very agile.
Compare your answer with the correct one above
Select the best example of the bottleneck effect.
The bottleneck effect occurs when a random and catastrophic event reduces the population of an organism by a large number. The remaining individuals repopulate the area after the event, but the genetic diversity of the population is greatly reduced. The founder effect occurs when a group of individuals are separated from the main population and subsequently establish a new population. This new population's genetic diversity is also greatly reduced. In both cases a small number of individual establish a population and this small "pool" of genes is how genetic diversity is reduced. The wolves are separated from their pack by being released in a new area and then established a new population; this is an example of the founder effect. The pea plants were killed by a random event, but the survivors did not survive by random chance. Instead they had a gene that gave them higher fitness compared to the other members. This is a better example of natural selection. The fish in the flash flood were separated from the main population and subsequently established a new population in the nearby lake. This is an example of the founder effect. The drought lake is the best example of the Bottleneck effect because the event was random and the survivors lived due to random chance. A small number of the fish reestablished their population in the lake, their genetic diversity was also reduced.
Compare your answer with the correct one above
Which of the following is true regarding genetic drift?
Genetic drift is a change in allele frequency between generations due to sampling error. Since genetic drift makes certain allele variations disappear, it decreases genetic variation. Additionally, genetic drift has a smaller effect in larger populations and a large effect in small populations.
Compare your answer with the correct one above
Evolution that occurs within a population due to the production of a finite number of zygotes from a given gene pool is referred to as which of these?
Genetic drift is due to the production of a finite number of zygotes within a population. This causes allele frequencies to change from one generation to the next. Genetic drift can result in the reduction of the fitness of individuals within a population if the alleles passed on are deleterious.
Compare your answer with the correct one above
When a population is reduced for a short period of time, and only rare alleles are lost, this is referred to as which of these?
When a population is reduced for a short period of time, only the rarest alleles are usually lost, as is seen in bottlenecking. In order for a significant change in allelic frequency to be seen, the population must become significantly small, and it must stay small for a significant amount of time. The latter is referred to as the Founder Effect.
Compare your answer with the correct one above
For natural selection to occur, which of the following must be true of a population?
Natural selection is one of the basic mechanisms of evolution, along with mutation, migration, and genetic drift. Phenotypic variations must be based on genetic variations rather than on varying environmental conditions to be considered an aspect of natural selection. While sexual reproduction is a medium through which genetic variation increases, it is not a requirement for natural selection to occur (i.e. an antibiotic-resistant strain of bacteria survives despite administration of antibiotics then reproduces via binary fission, increasing the proportion of bacteria in a population who contain the antibiotic resistance genes). Similarly, while both interspecies and intraspecies competition for resources such as food, water, and space may drive natural selection, these processes are not required for it to occur.
Compare your answer with the correct one above
Which type of isolation between populations is due to barriers related to time, such as differences in mating periods or differences in the time of day that individuals are most active.
Temporal isolation is between populations due to barriers related to time, such as differences in mating periods or differences in the time of day that individuals are most active. Geographic isolation between populations is due to physical barriers, not time. It wouldn't be both of them because only temporal isolation deals with time, versus geographic isolation is based on the physical barrier between populations such as mountains, rivers, or, for example, insects living on different trees in the jungle. Reproductive isolation is the inability to interbreed between species for various reasons like sterile offspring, physical incompatibility, or different mating rituals.
Compare your answer with the correct one above
A population of geese migrates from Canada to Florida every winter. Individuals from the Canadian population sometimes breed with native Floridian geese. What is this an example of?
This is an example of gene flow, because a small number of individuals from one population are passing some genes on to those in another population. Genetic drift occurs within a single population, so it does not apply here. This is not an example of speciation. There can't be a prezygotic barrier present if the geese are able to successfully mate.
Compare your answer with the correct one above