Finding Roots - Algebra II

Card 0 of 20

Question

Find the roots of the equation x_2 + 5_x + 6 = 0

Answer

To factor this, we need to find a pair of numbers that multiplies to 6 and sums to 5. The numbers 2 and 3 work. (2 * 3 = 6 and 2 + 3 = 5)

So (x + 2)(x + 3) = 0

x = –2 or x = –3

Compare your answer with the correct one above

Question

Solve for .

Answer

First factor the equation. Find two numbers that multiply to 24 and sum to -10. These numbers are -6 and -4:

Set both expressions equal to 0 and solve for x:

Compare your answer with the correct one above

Question

Solve for :

Answer

To factor, find two numbers that sum to 5 and multiply to 6.

Check the possible factors of 6:

1 * 6 = 6

1 + 6 = 7, so these don't work.

2 * 3 = 6

2 + 3 = 5, so these work!

Next, pull out the common factors of the first two terms and then the second two terms:

Set both expressions equal to 0 and solve:

and

Compare your answer with the correct one above

Question

Solve for x.

Answer

  1. Split up the middle term so that factoring by grouping is possible.

Factors of 10 include:

1 * 10= 10 1 + 10 = 11

2 * 5 =10 2 + 5 = 7

–2 * –5 = 10 –2 + –5 = –7 Good!

  1. Now factor by grouping, pulling "x" out of the first pair and "-5" out of the second.

  1. Now pull out the common factor, the "(x-2)," from both terms.

  1. Set both terms equal to zero to find the possible roots and solve using inverse operations.

x – 5 = 0, x = 5

x – 2 = 0, x = 2

Compare your answer with the correct one above

Question

Solve for x.

Answer

  1. First step of solving any equation: combine like terms. With quadratics, the easiest step to take is to set the expression equal to zero.

  1. There are two ways to do this problem. The first and most intuitive method is standard factoring.

16 + 1 = 17

8 + 2 = 10

4 + 4 = 8

  1. Then follow the usual steps, pulling out the common factor from both pairs, "x" from the first and "4" from the second.

  1. Pull out the "(x+4)" to wind up with:

  1. Set each term equal to zero.

x + 4 = 0, x = –4

But there's a shortcut! Assuming the terms are arranged by descending degree (i.e., ), and the third term is both a perfect square whose square root is equal to half of the middle term, mathematicians use a little trick. In this case, the square root of 16 is 4. 4 * 2=8, so the trick will work. Take the square root of the first and last term, then stick a plus sign in between them and square the parentheses.

And x, once again, is equal to –4.

Compare your answer with the correct one above

Question

Solve for x.

Answer

  1. Quadratics must be set equal to zero in order to be solved. To do so in this equation, the "8" has to wind up on the left side and combine with any other lone integers. So, multiply out the terms in order to make it possible for the "8" to be added to the other number.

Then combine like terms.

  1. Now factor.

1 + 16 = 17

4 + 4 = 8

2 + 8 = 10

  1. Pull out common factors, "x" and "8," respectively.

  1. Pull out "(x+2)" from both terms.

x = –8, –2

Compare your answer with the correct one above

Question

Solve for x.

Answer

  1. Combine like terms and simplify.

No further simplification is possible. The first term has a coefficient that can't be factored away. FOIL requires that all terms be multiplied by each other at some point, so the presence of the coefficient has to be reflected in every step of the factoring.

  1. Practically speaking, that means we add an extra step. Multiply the coefficient of the first term by the last term before factoring.

3 * 6 = 18

Factors of 18 include:

1 + 18 = 19

2 + 9 = 11

  1. Now pull out the common factor in each of the pairs, "3x" from the first two and "2" from the second two.

  1. Pull out the "(x+3)" from both terms.

  1. Set both parts equal to zero and solve.

3x + 2 = 0, x = –2/3

x + 3 = 0, x = –3

Compare your answer with the correct one above

Question

Solve the equation:

Answer

To solve the quadratic equation, , we set the equation equal to zero and then factor the quadratic, . Because these expressions multiply to equal 0, then it must be that at least one of the expressions equals 0. So we set up the corresponding equations and to obtain the answers and .

Compare your answer with the correct one above

Question

Solve for x.

Answer

This is a factoring problem, so we need to get all of the variables on one side and set the equation equal to zero. To do this we subtract 128 from both sides to get .

We then notice that all four numbers are divisible by four, so we can simplify the expression to .

Think of the equation in this format to help with the following explanation.

We must then factor to find the solutions for x. To do this we must make a factor tree of c (which is 32 in this case) to find the possible solutions. The possible numbers are 1 * 32, 2 * 16, and 4 * 8.

Since c is negative, we know that our factoring will produce a positive and negative number.

We then look at b to see if the greater number will be positive or negative. Since b is positive, we know that the greater number from our factoring tree will be positive.

We then use addition and subtraction with the factoring tree to find the numbers that add together to equal b. Remember that the greater number is positive and the lesser number is negative in this example.

Positive 8 and negative 4 equal b. We then plug our numbers into the factored form of .

We know that anything multiplied by 0 is equal to 0, so we plug in the numbers for x which make each equation equal to 0. In this case .

Compare your answer with the correct one above

Question

Solve the equation:

Answer

Add 8 to both sides to set the equation equal to 0:

To factor, find two integers that multiply to 24 and add to 10. 4 and 6 satisfy both conditions. Thus, we can rewrite the quadratic of three terms as a quadratic of four terms, using the the two integers we just found to split the middle coefficient:

Then factor by grouping:

Set each factor equal to 0 and solve:

and

Compare your answer with the correct one above

Question

Answer

.

Compare your answer with the correct one above

Question

Give all real solutions of the following equation:

Answer

By substituting - and, subsequently, this can be rewritten as a quadratic equation, and solved as such:

We are looking to factor the quadratic expression as , replacing the two question marks with integers with product 36 and sum ; these integers are .

Substitute back:

These factors can themselves be factored as the difference of squares:

Set each factor to zero and solve:

The solution set is .

Compare your answer with the correct one above

Question

Solve for :

Answer

To solve for , you need to isolate it to one side of the equation. You can subtract the from the right to the left. Then you can add the 6 from the right to the left:

Next, you can factor out this quadratic equation to solve for . You need to determine which factors of 8 add up to negative 6:

Finally, you set each binomial equal to 0 and solve for :

Compare your answer with the correct one above

Question

Solve for :

Answer

Compare your answer with the correct one above

Question

Factor the above function to find the roots of the quadratic equation.

Answer

Factoring a quadratic equation means doing FOIL backwards. Recall that when you use FOIL, you start with two binomials and end with a trinomial:

Now, we're trying to go the other direction -- starting with a trinomial, and going back to two factors.

Here, -3 is equal to , and -2 is equal to . We can use this information to find out what and are, separately. In other words, we have to find two factors of -3 that add up to -2.

Factors of -3:

  • 3*-1 (sum = 2)
  • -3*1 (sum = -2)

Thus our factored equation should look like this:

The roots of the quadratic equation are the values of x for which y is 0.

We know that anything times zero is zero. So the entire expression equals zero when at least one of the factors equals zero.

Compare your answer with the correct one above

Question

Find the roots of the function:

Answer

Factor:

Double check by factoring:

Add together:

Therefore:

Compare your answer with the correct one above

Question

Find the roots of the following quadratic expression:

Answer

First, we have to know that "finding the roots" means "finding the values of x which make the expression =0." So basically we are going to set the original expression = 0 and factor.

This quadratic looks messy to factor by sight, so we'll use factoring by composition. We multiply a and c together, and look for factors that add to b.

So we can use 8 and -3. We will re-write 5x using these numbers as 8x - 3x, and then factor by grouping.

Note the extra + sign we inserted to make sure the meaning is not lost when parentheses are added. Now we identify common factors to be "pulled" out.

Now we factor out the (3x + 4).

Setting each factor = 0 we can find the solutions.

So the solutions are x = 1/2 and x = -4/3, or {-4/3, 1/2}.

Compare your answer with the correct one above

Question

Find the roots of the following quadratic expression.

Answer

First we remember that "find the roots" means "find the values of x for which this expression equals 0." So we set the expression = 0 and approach solving as normal.

Since solving this by sight is difficult, we'll use composition, multiplying a by c and finding factors which add to b.

So -9 and 5 will work; we will use them to rewrite -4x as -9x + 5x and then factor by grouping.

We identify common factors to "pull" out of each group.

And now we factor out x-3.

Setting each factor equal to 0 lets us solve for x.

So our solutions are x = -5/3 and x = 3, which we write as x = {-5/3, 3}.

Compare your answer with the correct one above

Question

Find the roots of .

Answer

If we recognize this as an expression with form , with and , we can solve this equation by factoring:

and

and

Compare your answer with the correct one above

Question

Find the roots of the quadratic expression .

Answer

Looking at this expression, we can see it is of the form , with , , and . Therefore, we can write it in the form :

Compare your answer with the correct one above

Tap the card to reveal the answer