ACT Science

Practice Questions

ACT Science Test › ACT Science

Page 1 of 100
10 of 1000
1

Varsitytutor

The chart above shows the height growth of three different plant species after a period of 2 weeks. Each plant species was grown in 4 different soil mediums. All the plants were grown in the same environment with equal amounts of light, water, and oxygen.

Based on the chart above, which plant species was consistently taller than the other plant species regardless of soil medium?

2

In the 17th century, scientists were just beginning to understand the circulatory system of the heart. The two following viewpoints are the two most popular theories of the day.

Scientist I The heart pumps blood through arteries and veins but the two systems are separate. They are similar, just as the senses of smell and taste are when observing food, but ultimately they are two separate systems which perform separate functions. Hot blood flows from the heart, through the arteries, and to the organs which consume the blood much as a human would consume nourishment to survive. Venous blood originates in the liver and follows the veins to the organs where it is similarly consumed.

Scientist II The arteries and veins are two parts of one system. Blood flows from the heart, around the body, and back into the heart through the veins like two sets of one way streets. The idea of two systems, each pumping blood to the organs is unreasonable. If the heart can pump 6 oz of blood per minute, then the liver would have to produce 540 pounds of blood per day. A simple measurement of a human’s weight shows how unlikely that solution is. The single circulatory system is far superior as it explains the function of the heart, the arteries, and the veins clearly.

Why does Scientist I compare the arteries and veins to smell and taste?

3

As part of an engineering competition, a group of students are asked to design a flying robot that simulates the way real birds fly. Below, three of the students give their explanations for how bird flight occurs.

Student 1:

Birds are able to fly due to the shape of their wings. Bird wings are convex on their upper sides, while their lower sides are usually concave. This type of shape is called an airfoil. When a wing travels through the air, air passing over the top of the wing must travel a greater distance than air passing under the wing. The stream of air passing over the wing and the stream of air passing under the wing meet together at the tail end of the wing. In order for both streams of air to meet at the same point behind the wing, the air above the wing, which travels a greater distance, must travel faster than the air below the wing.

When a volume of air travels more quickly over a distance, its molecules are spread out over a greater distance. As a result, the air traveling over the top of a wing has a lower pressure than the air traveling under the wing. Because the wing has a region of low pressure above it and a region of relative high pressure below it, it experiences a net upward force. When this upward force is greater than or equal to the bird's weight, or the force exerted on a bird by gravity, the bird is able to fly.

The magnitude of the upward force depends on the speed at which air flows across the wing and on the corresponding difference in pressure over and under the wing. When birds flap their wings, they increase the speed of air flowing across their wings, thus producing a greater upward force.

Student 2:

There are two components to bird flight: lift and thrust. "Lift" refers to the upward force that allows a bird to stay aloft in the air despite its weight, while "thrust" refers to the horizontal force that allows a bird to move forward through the air. Birds are able to fly because they do not hold their wings perfectly horizontally. Instead, their wings are angled slightly upward. The angle at which a wing is inclined upward, with respect to the horizontal, is called its "angle of attack."

Air is not an ideal gas; instead, it has viscosity. This means that the air flowing close to a solid object tends to follow the curves of that object. When air encounters a bird's wing, it follows the incline of the wing. Because of the wing's angle of attack, the air is directed downward and back. The air continues to move downward, even after it has left the wing. This movement of the air creates an opposing force that pushes the bird upward and forward.

Thus, the angle of attack of a bird's wings accounts for both the lift and thrust components of a bird's flight.

Student 3:

Birds are able to fly because the way in which they move their wings allows them to create a net movement of air downward and backward. The flapping of a bird's wings can be understood as being composed of two parts: a downstroke, during which the bird moves its wings down, and an upstroke, during which the bird moves its wings up. During a downstroke, a bird displaces a quantity of air downward and behind it. During an upstroke, however, the bird's wings are angled upward in a way that displaces less air, and its wing feathers rotate to allow air to pass through them. Thus, on the upstroke, the bird much exerts less force on the air than it does on the downstroke.

The explanation given by Student 3 differs from the explanation given by Student 2 in that __________.

4

Magnets and electric charges show certain similarities. For example, both magnets and electric charges can exert a force on their surroundings. This force, when produced by a magnet, is called a magnetic field. When it is produced by an electric charge, the force is called an electric field. It has been observed that the strength of both magnetic fields and electric fields is inversely proportional to the square of the distance between a magnet or an electric charge and the objects that they affect.

Below, three scientists debate the relationship between electricity and magnetism.

Scientist 1:

Electricity and magnetism are two different phenomena. Materials such as iron, cobalt, and nickel contain magnetic domains: tiny regions of magnetism, each with two poles. Normally, the domains have a random orientation and are not aligned, so the magnetism of some domains cancels out that of other domains; however, in magnets, domains line up in the same direction, creating the two poles of the magnet and causing magnetic behavior.

In contrast, electricity is a moving electric charge which is caused by the flow of electrons through a material. Electrons flow through a material from a region of higher potential (more negative charge) to a region of lower potential (more positive charge). We can measure this flow of electrons as current, which refers to the amount of charge transferred over a period of time.

Scientist 2:

Electricity and magnetism are similar phenomena; however, one cannot be reduced to the other. Electricity involves two types of charges: positive and negative charge. Though electricity can occur in a moving form (in the form of current, or an electric charge moving through a wire), it can also occur in a static form. Static electricity involves no moving charge. Instead, objects can have a net excess of positive charge or a net excess of negative charge—because of having lost or gained electrons, respectively. When two static positive electric charges or two static negative electric charges are brought close together, they repel each other. However, when a positive and a negative static charge are brought together, they attract each other.

Similarly, all magnets have two poles. Magnetic poles that are alike repel each other, while dissimilar magnetic poles attract each other. Magnets and static electric charges are alike in that they both show attraction and repulsion in similar circumstances. However, while isolated static electric charges occur in nature, there are no single, isolated magnetic poles. All magnets have two poles, which cannot be dissociated from each other.

Scientist 3:

Electricity and magnetism are two aspects of the same phenomenon. A moving flow of electrons creates a magnetic field around it. Thus, wherever an electric current exists, a magnetic field will also exist. The magnetic field created by an electric current is perpendicular to the electric current's direction of flow.

Additionally, a magnetic field can induce an electric current. This can happen when a wire is moved across a magnetic field, or when a magnetic field is moved near a conductive wire. Because magnetic fields can produce electric fields and electric fields can produce magnetic fields, we can understand electricity and magnetism as parts of one phenomenon: electromagnetism.

According to Scientist 2, which of the following would be an example of a static electric charge?

5

A group of scientists wanted to test the effects of Nitra-Grow, a chemical additive that can be given to plants to help them grow. 3 test groups of plants were given all the same time of sunlight, the same type of soil, and the same amount of water. Plant A was given no extra chemicals. Plant B was given 5g of Nitra-Grow. Plant C was given 5g of Ammonia to see if Nitra-Grow worked any better than a basic nitrogen-based household product. The plants are then measured on 5 consecutive days to find their average height (in cm).

DAYHeight Plant A (cm)Height Plant B (cm)Height Plant C (cm)
11.21.21.2
21.41.41.2
31.61.81.3
41.82.41.3
52.02.61.4

What is the general relationship between plant height and the amount of days?

6

Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Yet, despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.

Scientist 1

During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.

Scientist 2

During waking hours, it is true that the body utilizes large amounts of energy. However, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.

Both scientists give evidence to support their theories. The evidence given by Scientist 1 can best be described as __________.

7

As part of an engineering competition, a group of students are asked to design a flying robot that simulates the way real birds fly. Below, three of the students give their explanations for how bird flight occurs.

Student 1:

Birds are able to fly due to the shape of their wings. Bird wings are convex on their upper sides, while their lower sides are usually concave. This type of shape is called an airfoil. When a wing travels through the air, air passing over the top of the wing must travel a greater distance than air passing under the wing. The stream of air passing over the wing and the stream of air passing under the wing meet together at the tail end of the wing. In order for both streams of air to meet at the same point behind the wing, the air above the wing, which travels a greater distance, must travel faster than the air below the wing.

When a volume of air travels more quickly over a distance, its molecules are spread out over a greater distance. As a result, the air traveling over the top of a wing has a lower pressure than the air traveling under the wing. Because the wing has a region of low pressure above it and a region of relative high pressure below it, it experiences a net upward force. When this upward force is greater than or equal to the bird's weight, or the force exerted on a bird by gravity, the bird is able to fly.

The magnitude of the upward force depends on the speed at which air flows across the wing and on the corresponding difference in pressure over and under the wing. When birds flap their wings, they increase the speed of air flowing across their wings, thus producing a greater upward force.

Student 2:

There are two components to bird flight: lift and thrust. "Lift" refers to the upward force that allows a bird to stay aloft in the air despite its weight, while "thrust" refers to the horizontal force that allows a bird to move forward through the air. Birds are able to fly because they do not hold their wings perfectly horizontally. Instead, their wings are angled slightly upward. The angle at which a wing is inclined upward, with respect to the horizontal, is called its "angle of attack."

Air is not an ideal gas; instead, it has viscosity. This means that the air flowing close to a solid object tends to follow the curves of that object. When air encounters a bird's wing, it follows the incline of the wing. Because of the wing's angle of attack, the air is directed downward and back. The air continues to move downward, even after it has left the wing. This movement of the air creates an opposing force that pushes the bird upward and forward.

Thus, the angle of attack of a bird's wings accounts for both the lift and thrust components of a bird's flight.

Student 3:

Birds are able to fly because the way in which they move their wings allows them to create a net movement of air downward and backward. The flapping of a bird's wings can be understood as being composed of two parts: a downstroke, during which the bird moves its wings down, and an upstroke, during which the bird moves its wings up. During a downstroke, a bird displaces a quantity of air downward and behind it. During an upstroke, however, the bird's wings are angled upward in a way that displaces less air, and its wing feathers rotate to allow air to pass through them. Thus, on the upstroke, the bird much exerts less force on the air than it does on the downstroke.

Suppose that, in designing a hovercraft, engineers position a fan so that it blows out air straight down from the bottom of the hovercraft. Given that Student 2's explanation is correct, this would generate which of the following?

8

As part of an engineering competition, a group of students are asked to design a flying robot that simulates the way real birds fly. Below, three of the students give their explanations for how bird flight occurs.

Student 1:

Birds are able to fly due to the shape of their wings. Bird wings are convex on their upper sides, while their lower sides are usually concave. This type of shape is called an airfoil. When a wing travels through the air, air passing over the top of the wing must travel a greater distance than air passing under the wing. The stream of air passing over the wing and the stream of air passing under the wing meet together at the tail end of the wing. In order for both streams of air to meet at the same point behind the wing, the air above the wing, which travels a greater distance, must travel faster than the air below the wing.

When a volume of air travels more quickly over a distance, its molecules are spread out over a greater distance. As a result, the air traveling over the top of a wing has a lower pressure than the air traveling under the wing. Because the wing has a region of low pressure above it and a region of relative high pressure below it, it experiences a net upward force. When this upward force is greater than or equal to the bird's weight, or the force exerted on a bird by gravity, the bird is able to fly.

The magnitude of the upward force depends on the speed at which air flows across the wing and on the corresponding difference in pressure over and under the wing. When birds flap their wings, they increase the speed of air flowing across their wings, thus producing a greater upward force.

Student 2:

There are two components to bird flight: lift and thrust. "Lift" refers to the upward force that allows a bird to stay aloft in the air despite its weight, while "thrust" refers to the horizontal force that allows a bird to move forward through the air. Birds are able to fly because they do not hold their wings perfectly horizontally. Instead, their wings are angled slightly upward. The angle at which a wing is inclined upward, with respect to the horizontal, is called its "angle of attack."

Air is not an ideal gas; instead, it has viscosity. This means that the air flowing close to a solid object tends to follow the curves of that object. When air encounters a bird's wing, it follows the incline of the wing. Because of the wing's angle of attack, the air is directed downward and back. The air continues to move downward, even after it has left the wing. This movement of the air creates an opposing force that pushes the bird upward and forward.

Thus, the angle of attack of a bird's wings accounts for both the lift and thrust components of a bird's flight.

Student 3:

Birds are able to fly because the way in which they move their wings allows them to create a net movement of air downward and backward. The flapping of a bird's wings can be understood as being composed of two parts: a downstroke, during which the bird moves its wings down, and an upstroke, during which the bird moves its wings up. During a downstroke, a bird displaces a quantity of air downward and behind it. During an upstroke, however, the bird's wings are angled upward in a way that displaces less air, and its wing feathers rotate to allow air to pass through them. Thus, on the upstroke, the bird much exerts less force on the air than it does on the downstroke.

Suppose that a robot is designed with stationary wings in the shape of airfoils; however, it is found that the robot is still not able to fly. Which of the following suggestions would Student 1 most likely not make about how to change the design of the robot?

9

Criminal and deviant acts have plagued society for many years. Scientists have tried to isolate variables and factors of individuals susceptible to these behaviors. The goal of this research is to create models of individuals most likely to commit deviant acts. Prediction of criminal behavior could reduce crime rates on a grand scale. Three scientists express their views on how to model criminal behavior and predict or prevent criminal acts.

Scientist 1

Criminal behavior is the result of prehistoric tendencies that favor aggressive and deviant acts for survival. A study of the corpses of criminals revealed that many exhibited prominent brows, strong upper bodies, large chests and other attributes that lend to a physical model of prediction that classifies criminals as "evolutionary throwbacks."

Scientist 2

Criminal behavior is the result of psychological ills that may be remedied with treatment and hospitalization. Studies have revealed that many criminal men possess an XYY makeup. This means that they contain one extra Y chromosome that results in aggressive, deviant, and criminal behaviors. Further studies have revealed that these genetic abnormalities can alter hormonal secretion and lead to criminally deviant actions and behaviors. Increased serotonin levels can lead to aggressive tendencies while altered dopamine secretion can chemically reward the commitment of deviant acts by stimulating pleasure receptors.

Scientist 3

Criminal behavior is the result of neurological abnormalities that can be studied and mapped. Studies of criminal and non-criminal persons have revealed inconsistencies in brain scans and neurological makeup. These alterations in brain chemistry and function have resulted in the development of sociopathic and narcissistic tendencies. These tendencies often increase probabilities for deviant and violent outbursts. The best way to predict criminal behavior is to utilize neurological scanning and mapping procedures.

A study of mice revealed that males possessing an XYY genotype are far more likely to engage in risky and aggressive behaviors. Which of the scientists would most agree with this evidence?

10

As part of an engineering competition, a group of students are asked to design a flying robot that simulates the way real birds fly. Below, three of the students give their explanations for how bird flight occurs.

Student 1:

Birds are able to fly due to the shape of their wings. Bird wings are convex on their upper sides, while their lower sides are usually concave. This type of shape is called an airfoil. When a wing travels through the air, air passing over the top of the wing must travel a greater distance than air passing under the wing. The stream of air passing over the wing and the stream of air passing under the wing meet together at the tail end of the wing. In order for both streams of air to meet at the same point behind the wing, the air above the wing, which travels a greater distance, must travel faster than the air below the wing.

When a volume of air travels more quickly over a distance, its molecules are spread out over a greater distance. As a result, the air traveling over the top of a wing has a lower pressure than the air traveling under the wing. Because the wing has a region of low pressure above it and a region of relative high pressure below it, it experiences a net upward force. When this upward force is greater than or equal to the bird's weight, or the force exerted on a bird by gravity, the bird is able to fly.

The magnitude of the upward force depends on the speed at which air flows across the wing and on the corresponding difference in pressure over and under the wing. When birds flap their wings, they increase the speed of air flowing across their wings, thus producing a greater upward force.

Student 2:

There are two components to bird flight: lift and thrust. "Lift" refers to the upward force that allows a bird to stay aloft in the air despite its weight, while "thrust" refers to the horizontal force that allows a bird to move forward through the air. Birds are able to fly because they do not hold their wings perfectly horizontally. Instead, their wings are angled slightly upward. The angle at which a wing is inclined upward, with respect to the horizontal, is called its "angle of attack."

Air is not an ideal gas; instead, it has viscosity. This means that the air flowing close to a solid object tends to follow the curves of that object. When air encounters a bird's wing, it follows the incline of the wing. Because of the wing's angle of attack, the air is directed downward and back. The air continues to move downward, even after it has left the wing. This movement of the air creates an opposing force that pushes the bird upward and forward.

Thus, the angle of attack of a bird's wings accounts for both the lift and thrust components of a bird's flight.

Student 3:

Birds are able to fly because the way in which they move their wings allows them to create a net movement of air downward and backward. The flapping of a bird's wings can be understood as being composed of two parts: a downstroke, during which the bird moves its wings down, and an upstroke, during which the bird moves its wings up. During a downstroke, a bird displaces a quantity of air downward and behind it. During an upstroke, however, the bird's wings are angled upward in a way that displaces less air, and its wing feathers rotate to allow air to pass through them. Thus, on the upstroke, the bird much exerts less force on the air than it does on the downstroke.

Dragonflies have four membranous, flat, independently-moving wings. Which of the three students' explanations of bird flight cannot be used to explain how dragonflies fly?

Page 1 of 100
Return to subject