Card 0 of 20
For the line
Which one of these coordinates can be found on the line?
To test the coordinates, plug the x-coordinate into the line equation and solve for y.
y = 1/3x -7
Test (3,-6)
y = 1/3(3) – 7 = 1 – 7 = -6 YES!
Test (3,7)
y = 1/3(3) – 7 = 1 – 7 = -6 NO
Test (6,-12)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (6,5)
y = 1/3(6) – 7 = 2 – 7 = -5 NO
Test (9,5)
y = 1/3(9) – 7 = 3 – 7 = -4 NO
Compare your answer with the correct one above
Consider the lines described by the following two equations:
4y = 3x2
3y = 4x2
Find the vertical distance between the two lines at the points where x = 6.
Since the vertical coordinates of each point are given by y, solve each equation for y and plug in 6 for x, as follows:
Taking the difference of the resulting y -values give the vertical distance between the points (6,27) and (6,48), which is 21.
Compare your answer with the correct one above
Solve the following system of equations:
–2x + 3y = 10
2x + 5y = 6
Since we have –2x and +2x in the equations, it makes sense to add the equations together to give 8y = 16 yielding y = 2. Then we substitute y = 2 into one of the original equations to get x = –2. So the solution to the system of equations is (–2, 2)
Compare your answer with the correct one above
Which of the following sets of coordinates are on the line ?
when plugged in for
and
make the linear equation true, therefore those coordinates fall on that line.
Because this equation is true, the point must lie on the line. The other given answer choices do not result in true equalities.
Compare your answer with the correct one above
Which of the following points can be found on the line ?
We are looking for an ordered pair that makes the given equation true. To solve, plug in the various answer choices to find the true equality.
Because this equality is true, we can conclude that the point lies on this line. None of the other given answer options will result in a true equality.
Compare your answer with the correct one above
Which of the following points is on the line ?
The only thing that is necessary to solve this question is to see if a given value will provide you with the
value paired with it. Among the options provided, only
works. This is verified by the following simple substitution:
Compare your answer with the correct one above
Given the graph of the line below, find the equation of the line.
To solve this question, you could use two points such as (1.2,0) and (0,-4) to calculate the slope which is 10/3 and then read the y-intercept off the graph, which is -4.
Compare your answer with the correct one above
A line is defined by the following equation:
What is the slope of that line?
The equation of a line is
y=mx + b where m is the slope
Rearrange the equation to match this:
7x + 28y = 84
28y = -7x + 84
y = -(7/28)x + 84/28
y = -(1/4)x + 3
m = -1/4
Compare your answer with the correct one above
If the coordinates (3, 14) and (_–_5, 15) are on the same line, what is the equation of the line?
First solve for the slope of the line, m using y=mx+b
m = (y2 – y1) / (x2 – x1)
= (15 – 14) / (_–_5 _–_3)
= (1 )/( _–_8)
=_–_1/8
y = –(1/8)x + b
Now, choose one of the coordinates and solve for b:
14 = –(1/8)3 + b
14 = _–_3/8 + b
b = 14 + (3/8)
b = 14.375
y = –(1/8)x + 14.375
Compare your answer with the correct one above
Which line passes through the points (0, 6) and (4, 0)?
P1 (0, 6) and P2 (4, 0)
First, calculate the slope: m = rise ÷ run = (y2 – y1)/(x2 – x1), so m = –3/2
Second, plug the slope and one point into the slope-intercept formula:
y = mx + b, so 0 = –3/2(4) + b and b = 6
Thus, y = –3/2x + 6
Compare your answer with the correct one above
What line goes through the points (1, 3) and (3, 6)?
If P1(1, 3) and P2(3, 6), then calculate the slope by m = rise/run = (y2 – y1)/(x2 – x1) = 3/2
Use the slope and one point to calculate the intercept using y = mx + b
Then convert the slope-intercept form into standard form.
Compare your answer with the correct one above
Let y = 3_x_ – 6.
At what point does the line above intersect the following:
If we rearrange the second equation it is the same as the first equation. They are the same line.
Compare your answer with the correct one above
What is the equation of a line that passes through coordinates and
?
Our first step will be to determing the slope of the line that connects the given points.
Our slope will be . Using slope-intercept form, our equation will be
. Use one of the give points in this equation to solve for the y-intercept. We will use
.
Now that we know the y-intercept, we can plug it back into the slope-intercept formula with the slope that we found earlier.
This is our final answer.
Compare your answer with the correct one above
What is the slope-intercept form of ?
The slope intercept form states that . In order to convert the equation to the slope intercept form, isolate
on the left side:
Compare your answer with the correct one above
Which of the following equations does NOT represent a line?
The answer is .
A line can only be represented in the form or
, for appropriate constants
,
, and
. A graph must have an equation that can be put into one of these forms to be a line.
represents a parabola, not a line. Lines will never contain an
term.
Compare your answer with the correct one above
Which of the following is the equation of a line between the points and
?
Since you have y-intercept, this is very easy. You merely need to find the slope. Then you can use the form to find one version of the line.
The slope is:
Thus, for the points and
, it is:
Thus, one form of our line is:
If you move the to the left side, you get:
, which is one of your options.
Compare your answer with the correct one above
What is an equation of the line going through points and
?
If you have two points, you can always use the point-slope form of a line to find your equation. Recall that this is:
You first need to find the slope, though. Recall that this is:
For the points and
, it is:
Thus, you can write the equation using either point:
Now, notice that one of the options is:
This is merely a multiple of the equation we found, so it is fine!
Compare your answer with the correct one above
What is the slope of the line:
First put the question in slope intercept form (y = mx + b):
–(1/6)y = –(14/3)x – 7 =>
y = 6(14/3)x – 7
y = 28x – 7.
The slope is 28.
Compare your answer with the correct one above
If 2x – 4y = 10, what is the slope of the line?
First put the equation into slope-intercept form, solving for y: 2x – 4y = 10 → –4y = –2x + 10 → y = 1/2*x – 5/2. So the slope is 1/2.
Compare your answer with the correct one above
What is the slope of the line with equation 4_x_ – 16_y_ = 24?
The equation of a line is:
y = mx + b, where m is the slope
4_x_ – 16_y_ = 24
–16_y_ = –4_x_ + 24
y = (–4_x_)/(–16) + 24/(–16)
y = (1/4)x – 1.5
Slope = 1/4
Compare your answer with the correct one above